FPGA Based Accelerator for Image Steganography | SpringerLink
Skip to main content

FPGA Based Accelerator for Image Steganography

  • Conference paper
  • First Online:
Methods and Applications for Modeling and Simulation of Complex Systems (AsiaSim 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1911))

Included in the following conference series:

Abstract

In this study, a novel approach is proposed for enhancing the speed and efficiency of steganography system by designing a hardware model that adopts the image-in-image (grey-in-color) method and utilizes the Least Significant Bit (LSB) algorithm. The sizes of secret and cover images are chosen so that all secret bits can be embedded inside the LSB bits of the pixels for the three RBG matrices for the cover image and produce the color stego-image. On the receiving part, these embedded secret bits will be extracted from stego-image and reform the original secret image. Using XSG and Vivado design suite, a successful FPGA-based steganography system was developed as an accelerator tool with high-speed processing that reaches 250 times faster than the software-based system. The quality of the stego-image and the extracted secret image was calculated by three metrics, which are the Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), and Cross Correlation (CCR). The comparison metrics values affirm a high level of trust in the generated stego-image, and the extracted secret image being identical to the original. The FPGA chip utilized in the implemented system consumes only 1% of the hardware resources, and a remarkable speedup factor of 250 is achieved, indicating that expanding the system for larger image sizes becomes highly feasible. Moreover, this expansion can be accomplished economically by utilizing low-cost field-programmable gate array (FPGA) chips.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Emad, E., Safey, A., Refaat, A., Osama, Z., Sayed, E., Mohamed, E.: A secure image steganography algorithm based on least significant bit and integer wavelet transform. J. Syst. Eng. Electron. 29(3), 639–649 (2018)

    Google Scholar 

  2. Al-Korbi, H.A., Al-Ataby, A., Al-Taee, M.A., Al-Nuaimy, W.: High-capacity: image steganography based on Haar DWT for hiding miscellaneous data. In: 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), pp. 1–6 (2015)

    Google Scholar 

  3. Safey, A., Zahran, O., Kordy, M.: FPGA implementation of robust image steganography technique based on Least Significant Bit (LSB) in spatial domain. Int. J. Comput. Appl. 145, 43–52 (2016)

    Google Scholar 

  4. Shet, K.S., Aswath, A.R., Hanumantharaju, M.C., Gao, X.-Z.: Novel high-speed reconfigurable FPGA architectures for EMD-based image steganography. Multimed. Tools Appl. 78(13), 18309–18338 (2019)

    Article  Google Scholar 

  5. Abed, S., Almutairi, M., Alwatyan, A., Almutairi, O., AlEnizy, W., Al-Noori, A.: An automated security approach of video steganography based LSB using FPGA implementation. J. Circuits Syst. Comput. 28, 1950083 (27 pages) (2019)

    Google Scholar 

  6. Hussain, M., Wahid, A., Idris, M., Ho, A., Jung, K.-H.: Image steganography in spatial domain: a survey. Signal Process. Image Commun. 65, 46–66 (2018)

    Google Scholar 

  7. Kothari, L., Thakkar, R., Khara, S.: Data hiding on web using combination of Steganography and Cryptography. In: 2017 International Conference on Computer, Communications and Electronics (Comptelix), pp. 448–452 (2017)

    Google Scholar 

  8. Yahaya, M., Ajibola, A.: Cryptosystem for secure data transmission using Advance Encryption Standard (AES) and Steganography. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 5, 317–322 (2019)

    Google Scholar 

  9. Devi, A.G., Thota, A., Nithya, G., Majji, S., Gopatoti, A., Dhavamani, L.: Advancement of digital image steganography using deep convolutional neural networks. In: 2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC), pp. 250–254 (2022)

    Google Scholar 

  10. Wahed, M.A., Nyeem, H.: Efficient LSB substitution for interpolation based reversible data hiding scheme. In: 2017 20th International Conference of Computer and Information Technology (ICCIT), pp. 1–6, August 2017

    Google Scholar 

  11. Rustad, S., Setiadi, D.R.I.M., Syukur, A., Andono, P.N.: Inverted LSB image steganography using adaptive pattern to improve imperceptibility. J. King Saud Univ. - Comput. Inf. Sci. 34(6, Part B), 3559–3568 (2022). https://doi.org/10.1016/j.jksuci.2020.12.017

  12. Andono, P.N., Setiadi, D.R.I.M.: Quantization selection based on characteristic of cover image for PVD Steganography to optimize imperceptibility and capacity. Multimed. Tools Appl. 82(3), 3561–3580 (2023)

    Article  Google Scholar 

  13. Sun, H., Luo, H., Wu, T.-Y., Obaidat, M.: A PSNR-controllable data hiding algorithm based on LSBs substitution, pp. 1–7 (2015)

    Google Scholar 

  14. Ji, Y.: FPSA: a full system stack solution for reconfigurable ReRAM-based NN accelerator architecture (2019)

    Google Scholar 

  15. Shawahna, A., Sait, S.M., El-Maleh, A.: FPGA-based accelerators of deep learning networks for learning and classification: a review. IEEE Access 7, 7823–7859 (2019)

    Article  Google Scholar 

  16. Al-Ibadi, M.A.: Hardware implementation for high-speed parallel adder for QSD 2D data arrays. In: 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), pp. 1–5 (2020)

    Google Scholar 

  17. Meyer, M., Kenter, T., Plessl, C.: In-depth FPGA accelerator performance evaluation with single node benchmarks from the HPC challenge benchmark suite for Intel and Xilinx FPGAs using OpenCL. J. Parallel Distrib. Comput. 160, 79–89 (2022). https://doi.org/10.1016/j.jpdc.2021.10.007

  18. Li, L., Luo, B., Li, Q., Fang, X.: A color images steganography method by multiple embedding strategy based on Sobel operator. In: 2009 International Conference on Multimedia Information Networking and Security, pp. 118–121.187 (2009)

    Google Scholar 

  19. Mishra, M., Routray, A.R., Kumar, S.: High security image steganography with modified Arnold cat map. arXiv, abs/1408.3838 (2012)

  20. Rao, Y.: Application of normalized cross correlation to image registration. Int. J. Res. Eng. Technol. 03, 12–16 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Al-Ibadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sabeeh, L.N., Al-Ibadi, M.A. (2024). FPGA Based Accelerator for Image Steganography. In: Hassan, F., Sunar, N., Mohd Basri, M.A., Mahmud, M.S.A., Ishak, M.H.I., Mohamed Ali, M.S. (eds) Methods and Applications for Modeling and Simulation of Complex Systems. AsiaSim 2023. Communications in Computer and Information Science, vol 1911. Springer, Singapore. https://doi.org/10.1007/978-981-99-7240-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7240-1_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7239-5

  • Online ISBN: 978-981-99-7240-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics