BAHS: A Blockchain-Aided Hash-Based Signature Scheme | SpringerLink
Skip to main content

BAHS: A Blockchain-Aided Hash-Based Signature Scheme

  • Conference paper
  • First Online:
Information Security Practice and Experience (ISPEC 2023)

Abstract

Hash-based one-time signatures are becoming increasingly important as they are post-quantum safe and have been used in multi-cast communication and other applications. However, managing the state of such signatures can present a significant challenge, as signers are typically responsible for ensuring that the state cannot be reused. Recently, blockchain, as a public platform, is used to design revocation management and status verification systems. While blockchain revocation is attractive, many well-known blockchains make use of ECDSA as their underlying signature scheme, and this is not post-quantum safe. Researchers have been working on replacing ECDSA with post-quantum signature schemes but they are much more costly. In this paper, we introduce a new one-time signature scheme, called Blockchain-Aided Hash-based Signature (BAHS), in which a hash-based commitment scheme acts as the building block, and signers’ commitments and opened commitments are publicly accessible via a distributed blockchain. A signature is formed from the commitment/opened commitment and blockchain. Unlike existing blockchain systems, the commitment in BAHS is simpler than that in most existing hash-based one-time signature schemes or other post-quantum signature schemes. We provide a formal security model for the BAHS scheme and give the security proof. Finally, we have implemented our BAHS scheme and the result shows its practicality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ISO/IEC 10118–1. Information technology - Security techniques - Hash functions - Part 1: General. Standard (2016)

    Google Scholar 

  2. ISO/IEC CD 14888–4.2. Information technology - Security techniques - Digital signatures with appendix - Part 4: Stateful hash-based mechanisms (2022)

    Google Scholar 

  3. Yakubov, A., Shbair, W., Wallbom, A.: A blockchain-based PKI management framework. In: The First IEEE/IFIP International Workshop on Managing and Managed by Blockchain (Man2Block) colocated with IEEE/IFIP NOMS (2018)

    Google Scholar 

  4. Becker, G.: Merkle signature schemes, merkle trees and their cryptanalysis. Ruhr-University Bochum, Technical report, 12:19 (2008)

    Google Scholar 

  5. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3

    Chapter  MATH  Google Scholar 

  6. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_5

    Chapter  Google Scholar 

  7. Cozzo, D., Smart, N.P.: Sharing the LUOV: threshold post-quantum signatures. In: Albrecht, M. (ed.) IMACC 2019. LNCS, vol. 11929, pp. 128–153. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35199-1_7

    Chapter  Google Scholar 

  8. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algorithm (ECDSA). Int. J. Inf. Secur. 1, 36–63 (2001)

    Article  Google Scholar 

  9. McGrew, D., Kampanakis, P., Fluhrer, S., Gazdag, S.-L., Butin, D., Buchmann, J.: State management for hash-based signatures. In: Chen, L., McGrew, D., Mitchell, C. (eds.) SSR 2016. LNCS, vol. 10074, pp. 244–260. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49100-4_11

    Chapter  Google Scholar 

  10. Damgård, I.: Commitment schemes and zero-knowledge protocols. In: Damgård, I.B. (ed.) EEF School 1998. LNCS, vol. 1561, pp. 63–86. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48969-X_3

    Chapter  Google Scholar 

  11. Bernstein, D.J., Hülsing, A.: The SPHINCS\({}^{\text{+}}\) signature framework. In: ACM CCS, pp. 2129–2146 (2019)

    Google Scholar 

  12. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_15

    Chapter  Google Scholar 

  13. Adja, Y.C.E., Hammi, B., Ahmed, S., Zeadally, S.: A blockchain-based certificate revocation management and status verification system. Comput. Secur. 104, 102209 (2021)

    Article  Google Scholar 

  14. El Bansarkhani, R., Mohamed, M.S.E., Petzoldt, A.: MQSAS - a multivariate sequential aggregate signature scheme. In: Bishop, M., Nascimento, A.C.A. (eds.) ISC 2016. LNCS, vol. 9866, pp. 426–439. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45871-7_25

    Chapter  Google Scholar 

  15. Groot Bruinderink, L., Hülsing, A.: “Oops, I Did It Again’’ – security of one-time signatures under two-message attacks. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 299–322. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9_15

    Chapter  Google Scholar 

  16. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC, pp. 197–206 (2008)

    Google Scholar 

  17. Holmes, S.: Impact of post-quantum signatures on blockchain and DLT systems. In: DLT (2023)

    Google Scholar 

  18. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully dynamic group signatures. J. Cryptol. 33(4), 1822–1870 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: ACM CCS, pp. 28–36 (1999)

    Google Scholar 

  20. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé, D.: Crystals-dilithium: digital signatures from module lattices (2018)

    Google Scholar 

  21. Lamport, L. : Constructing digital signatures from a one way function (1979)

    Google Scholar 

  22. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: ACM CCS (1993)

    Google Scholar 

  23. Marco, L., Talayhan, A., Vaudenay, S.: Making classical (threshold) signatures post-quantum for single use on a public ledger. Cryptology ePrint Archive (2023/420)

    Google Scholar 

  24. Li, Q., Cao, G.: Multicast authentication in the smart grid with one-time signature. IEEE Trans. Smart Grid 2(4), 686–696 (2011)

    Article  Google Scholar 

  25. Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-optimal DSA/ECDSA signatures and an application to bitcoin wallet security. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 156–174. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_9

    Chapter  MATH  Google Scholar 

  26. Chang, S.M., Shieh, S., Lin, W.W., Hsieh, C.M.: An efficient broadcast authentication scheme in wireless sensor networks. In: ASIACCS, pp. 311–320 (2006)

    Google Scholar 

Download references

Acknowledgments

We thank the European Union’s Horizon research and innovation program for support under grant agreement numbers: 101069688 (CONNECT), 101070627 (REWIRE), 952697 (ASSURED), 101019645 (SECANT) and 101095634 (ENTRUST). These projects are funded by the UK government’s Horizon Europe guarantee and administered by UKRI. The first author thanks the China Scholarship Council (CSC) for providing the research scholarship. We also thank the anonymous reviewers from ISPEC for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqun Chen .

Editor information

Editors and Affiliations

Appendices

Appendix

A Oracles for the Unforgeability

Fig. 6.
figure 6

Oracles for the unforgeability

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Chen, L., Meng, L., Tian, Y. (2023). BAHS: A Blockchain-Aided Hash-Based Signature Scheme. In: Meng, W., Yan, Z., Piuri, V. (eds) Information Security Practice and Experience. ISPEC 2023. Lecture Notes in Computer Science, vol 14341. Springer, Singapore. https://doi.org/10.1007/978-981-99-7032-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7032-2_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7031-5

  • Online ISBN: 978-981-99-7032-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics