Abstract
Entity alignment (EA) aims to link entities referring to the same real-world identity from different knowledge graphs (KGs). Most existing EA methods focus on static KGs, while practical graphs are growing and changing over time. Although some EA methods study dynamic settings to suit the changes, they perform suboptimal as they are unaware of knowledge oblivion and the prohibitive model size. To address the above issues, we propose a Parameter-Lite dynamic Entity Alignment model (PLEA), which leverages prior knowledge to embed entities and even represent unseen entities. We design a novel lightweight module that only trains a small number of parameters added by the adapter and keeps the original network fixed, so as to retain knowledge from previous snapshots with low computational cost. As for unseen entities, we design a regularized entity mapping mechanism to inject prior knowledge into unseen entity embeddings to improve representation ability. The experimental results on three real-world datasets demonstrate that our proposed PLEA archives up to 4% accuracy with only 50% of the number of parameters, compared with existing state-of-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zhu, X., et al.: Multi-modal knowledge graph construction and application: a survey. IEEE Trans. Knowl. Data Eng. (2022)
Jiang, L., Usbeck, R.: Knowledge graph question answering datasets and their generalizability: are they enough for future research? In: 2022 Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 3209–3218 (2022)
Yang, Y., Huang, C., Xia, L., Li, C.: Knowledge graph contrastive learning for recommendation, In: 2022 Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1434–1443 (2022)
Zhang, R., Trisedya, B.D., Li, M., Jiang, Y., Qi, J.: A benchmark and comprehensive survey on knowledge graph entity alignment via representation learning. VLDB J. 31(5), 1143–1168 (2022)
Guo, L., Han, Y., Zhang, Q., Chen, H.: Deep reinforcement learning for entity alignment. arXiv preprint arXiv:2203.03315 (2022)
Mao, X., Wang, W., Wu, Y., Lan, M.: Boosting the speed of entity alignment 10\(\times \): dual attention matching network with normalized hard sample mining, In: 2021 Proceedings of the Web Conference, pp. 821–832 (2021)
Xin, K., et al.: Ensemble semi-supervised entity alignment via cycle-teaching. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 4, pp. 4281–4289 (2022)
Guo, L., Zhang, Q., Sun, Z., Chen, M., Hu, W., Chen, H.: Understanding and improving knowledge graph embedding for entity alignment, In: 2022 International Conference on Machine Learning. PMLR, pp. 8145–8156 (2022)
Wu, T., Khan, A., Yong, M., Qi, G., Wang, M.: Efficiently embedding dynamic knowledge graphs. Knowl. Based Syst. 250, 109124 (2022)
Chen, M., Zhang, W., Geng, Y., Xu, Z., Pan, J.Z., Chen, H.: Generalizing to unseen elements: a survey on knowledge extrapolation for knowledge graphs. arXiv preprint arXiv:2302.01859 (2023)
Rieger, L., Singh, C., Murdoch, W., Yu, B.: Interpretations are useful: penalizing explanations to align neural networks with prior knowledge, In: 2020 International Conference on Machine Learning. PMLR, pp. 8116–8126 (2020)
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, vol. 26 (2013)
Ji, S., Pan, S., Cambria, E., Marttinen, P., Philip, S.Y.: A survey on knowledge graphs: representation, acquisition, and applications. IEEE Trans. Neural Netw. Learn. Syst. 33(2), 494–514 (2021)
Christophides, V., Efthymiou, V., Palpanas, T., Papadakis, G., Stefanidis, K.: An overview of end-to-end entity resolution for Big Data. ACM Comput. Surv. (CSUR) 53(6), 1–42 (2020)
Sun, Z., Huang, J., Hu, W., Chen, M., Guo, L., Qu, Y.: TransEdge: translating relation-contextualized embeddings for knowledge graphs. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11778, pp. 612–629. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30793-6_35
Wang, Z., Lv, Q., Lan, X., Zhang, Y.: Cross-lingual knowledge graph alignment via graph convolutional networks. In: 2018 Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 349–357 (2018)
Sun, Z., et al.: Knowledge graph alignment network with gated multi-hop neighborhood aggregation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 01, pp. 222–229 (2020)
Tang, W., et al.: Weakly supervised entity alignment with positional inspiration. In: 2023 Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, pp. 814–822 (2023)
Ge, X., Wang, Y.C., Wang, B., Kuo, C.-C.J., et al.: TypeEA: type-associated embedding for knowledge graph entity alignment. APSIPA Trans. Sig. Inf. Process. 12(1), 1–23 (2023)
Xin, K., Sun, Z., Hua, W., Hu, W., Zhou, X.: Informed multi-context entity alignment, In: 2022 Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp. 1197–1205 (2022)
Li, Y., Li, J., Suhara, Y., Doan, A., Tan, W.-C.: Effective entity matching with transformers. VLDB J., 1–21 (2023). https://doi.org/10.1007/s00778-023-00779-z
Zeng, W., Zhao, X., Tang, J., Lin, X., Groth, P.: Reinforcement learning-based collective entity alignment with adaptive features. ACM Trans. Inf. Syst. (TOIS) 39(3), 1–31 (2021)
Guo, L., Han, Y., Zhang, Q., Chen, H.: Deep reinforcement learning for entity alignment. arXiv preprint arXiv:2203.03315 (2022)
Yan, Y., Liu, L., Ban, Y., Jing, B., Tong, H.: Dynamic knowledge graph alignment. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 5, pp. 4564–4572 (2021)
Wang, Y., et al.: Facing changes: continual entity alignment for growing knowledge graphs. In: Sattler, U., et al. (eds.) The Semantic Web, ISWC 2022. LNCS, vol. 13489, pp. 196–213. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19433-7_12
Cotsakis, S., Klaoudatou, I., Kolionis, G., Miritzis, J., Trachilis, D.: The conformal cosmological potential. Astron. 1(1), 17–35 (2022)
He, J., Zhou, C., Ma, X., Berg-Kirkpatrick, T., Neubig, G.: Towards a unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366 (2021)
Wang, P., Han, J., Li, C., Pan, R.: Logic attention based neighborhood aggregation for inductive knowledge graph embedding. In: 2019 Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 7152–7159 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Xiao, M., Chen, T., Wang, Z., Long, J., Huang, J., Yang, L. (2024). Parameter-Lite Adapter for Dynamic Entity Alignment. In: Liu, F., Sadanandan, A.A., Pham, D.N., Mursanto, P., Lukose, D. (eds) PRICAI 2023: Trends in Artificial Intelligence. PRICAI 2023. Lecture Notes in Computer Science(), vol 14325. Springer, Singapore. https://doi.org/10.1007/978-981-99-7019-3_36
Download citation
DOI: https://doi.org/10.1007/978-981-99-7019-3_36
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-7018-6
Online ISBN: 978-981-99-7019-3
eBook Packages: Computer ScienceComputer Science (R0)