Parameter-Lite Adapter for Dynamic Entity Alignment | SpringerLink
Skip to main content

Parameter-Lite Adapter for Dynamic Entity Alignment

  • Conference paper
  • First Online:
PRICAI 2023: Trends in Artificial Intelligence (PRICAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14325))

Included in the following conference series:

  • 978 Accesses

Abstract

Entity alignment (EA) aims to link entities referring to the same real-world identity from different knowledge graphs (KGs). Most existing EA methods focus on static KGs, while practical graphs are growing and changing over time. Although some EA methods study dynamic settings to suit the changes, they perform suboptimal as they are unaware of knowledge oblivion and the prohibitive model size. To address the above issues, we propose a Parameter-Lite dynamic Entity Alignment model (PLEA), which leverages prior knowledge to embed entities and even represent unseen entities. We design a novel lightweight module that only trains a small number of parameters added by the adapter and keeps the original network fixed, so as to retain knowledge from previous snapshots with low computational cost. As for unseen entities, we design a regularized entity mapping mechanism to inject prior knowledge into unseen entity embeddings to improve representation ability. The experimental results on three real-world datasets demonstrate that our proposed PLEA archives up to 4% accuracy with only 50% of the number of parameters, compared with existing state-of-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8464
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhu, X., et al.: Multi-modal knowledge graph construction and application: a survey. IEEE Trans. Knowl. Data Eng. (2022)

    Google Scholar 

  2. Jiang, L., Usbeck, R.: Knowledge graph question answering datasets and their generalizability: are they enough for future research? In: 2022 Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 3209–3218 (2022)

    Google Scholar 

  3. Yang, Y., Huang, C., Xia, L., Li, C.: Knowledge graph contrastive learning for recommendation, In: 2022 Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1434–1443 (2022)

    Google Scholar 

  4. Zhang, R., Trisedya, B.D., Li, M., Jiang, Y., Qi, J.: A benchmark and comprehensive survey on knowledge graph entity alignment via representation learning. VLDB J. 31(5), 1143–1168 (2022)

    Article  Google Scholar 

  5. Guo, L., Han, Y., Zhang, Q., Chen, H.: Deep reinforcement learning for entity alignment. arXiv preprint arXiv:2203.03315 (2022)

  6. Mao, X., Wang, W., Wu, Y., Lan, M.: Boosting the speed of entity alignment 10\(\times \): dual attention matching network with normalized hard sample mining, In: 2021 Proceedings of the Web Conference, pp. 821–832 (2021)

    Google Scholar 

  7. Xin, K., et al.: Ensemble semi-supervised entity alignment via cycle-teaching. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 4, pp. 4281–4289 (2022)

    Google Scholar 

  8. Guo, L., Zhang, Q., Sun, Z., Chen, M., Hu, W., Chen, H.: Understanding and improving knowledge graph embedding for entity alignment, In: 2022 International Conference on Machine Learning. PMLR, pp. 8145–8156 (2022)

    Google Scholar 

  9. Wu, T., Khan, A., Yong, M., Qi, G., Wang, M.: Efficiently embedding dynamic knowledge graphs. Knowl. Based Syst. 250, 109124 (2022)

    Article  Google Scholar 

  10. Chen, M., Zhang, W., Geng, Y., Xu, Z., Pan, J.Z., Chen, H.: Generalizing to unseen elements: a survey on knowledge extrapolation for knowledge graphs. arXiv preprint arXiv:2302.01859 (2023)

  11. Rieger, L., Singh, C., Murdoch, W., Yu, B.: Interpretations are useful: penalizing explanations to align neural networks with prior knowledge, In: 2020 International Conference on Machine Learning. PMLR, pp. 8116–8126 (2020)

    Google Scholar 

  12. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  13. Ji, S., Pan, S., Cambria, E., Marttinen, P., Philip, S.Y.: A survey on knowledge graphs: representation, acquisition, and applications. IEEE Trans. Neural Netw. Learn. Syst. 33(2), 494–514 (2021)

    Article  MathSciNet  Google Scholar 

  14. Christophides, V., Efthymiou, V., Palpanas, T., Papadakis, G., Stefanidis, K.: An overview of end-to-end entity resolution for Big Data. ACM Comput. Surv. (CSUR) 53(6), 1–42 (2020)

    Article  Google Scholar 

  15. Sun, Z., Huang, J., Hu, W., Chen, M., Guo, L., Qu, Y.: TransEdge: translating relation-contextualized embeddings for knowledge graphs. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11778, pp. 612–629. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30793-6_35

    Chapter  Google Scholar 

  16. Wang, Z., Lv, Q., Lan, X., Zhang, Y.: Cross-lingual knowledge graph alignment via graph convolutional networks. In: 2018 Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 349–357 (2018)

    Google Scholar 

  17. Sun, Z., et al.: Knowledge graph alignment network with gated multi-hop neighborhood aggregation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 01, pp. 222–229 (2020)

    Google Scholar 

  18. Tang, W., et al.: Weakly supervised entity alignment with positional inspiration. In: 2023 Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, pp. 814–822 (2023)

    Google Scholar 

  19. Ge, X., Wang, Y.C., Wang, B., Kuo, C.-C.J., et al.: TypeEA: type-associated embedding for knowledge graph entity alignment. APSIPA Trans. Sig. Inf. Process. 12(1), 1–23 (2023)

    Google Scholar 

  20. Xin, K., Sun, Z., Hua, W., Hu, W., Zhou, X.: Informed multi-context entity alignment, In: 2022 Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp. 1197–1205 (2022)

    Google Scholar 

  21. Li, Y., Li, J., Suhara, Y., Doan, A., Tan, W.-C.: Effective entity matching with transformers. VLDB J., 1–21 (2023). https://doi.org/10.1007/s00778-023-00779-z

  22. Zeng, W., Zhao, X., Tang, J., Lin, X., Groth, P.: Reinforcement learning-based collective entity alignment with adaptive features. ACM Trans. Inf. Syst. (TOIS) 39(3), 1–31 (2021)

    Article  Google Scholar 

  23. Guo, L., Han, Y., Zhang, Q., Chen, H.: Deep reinforcement learning for entity alignment. arXiv preprint arXiv:2203.03315 (2022)

  24. Yan, Y., Liu, L., Ban, Y., Jing, B., Tong, H.: Dynamic knowledge graph alignment. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 5, pp. 4564–4572 (2021)

    Google Scholar 

  25. Wang, Y., et al.: Facing changes: continual entity alignment for growing knowledge graphs. In: Sattler, U., et al. (eds.) The Semantic Web, ISWC 2022. LNCS, vol. 13489, pp. 196–213. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19433-7_12

  26. Cotsakis, S., Klaoudatou, I., Kolionis, G., Miritzis, J., Trachilis, D.: The conformal cosmological potential. Astron. 1(1), 17–35 (2022)

    Article  Google Scholar 

  27. He, J., Zhou, C., Ma, X., Berg-Kirkpatrick, T., Neubig, G.: Towards a unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366 (2021)

  28. Wang, P., Han, J., Li, C., Pan, R.: Logic attention based neighborhood aggregation for inductive knowledge graph embedding. In: 2019 Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 7152–7159 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, M., Chen, T., Wang, Z., Long, J., Huang, J., Yang, L. (2024). Parameter-Lite Adapter for Dynamic Entity Alignment. In: Liu, F., Sadanandan, A.A., Pham, D.N., Mursanto, P., Lukose, D. (eds) PRICAI 2023: Trends in Artificial Intelligence. PRICAI 2023. Lecture Notes in Computer Science(), vol 14325. Springer, Singapore. https://doi.org/10.1007/978-981-99-7019-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7019-3_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7018-6

  • Online ISBN: 978-981-99-7019-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics