A Modified Artificial Potential Field Method Based on Subgoal Points for Mobile Robot | SpringerLink
Skip to main content

A Modified Artificial Potential Field Method Based on Subgoal Points for Mobile Robot

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14267))

Included in the following conference series:

Abstract

In this paper, a modified artificial potential field (MAPF) method was proposed for general mobile robot navigation system. This MAPF method can effectively solve the unreachable goal problem and the local minima problem of traditional APF method. The first key idea of MAPF method is to modify the repulsive force function and thus optimize the direction of total repulsive force; the second key idea is to generate a serials of subgoal points around obstacles with specific method, so as to help the robot escape from or keep away from local minima area. By comparing with other similar algorithms in simulation environment, the MAPF algorithm can generate shorter paths efficiently. More importantly, it also can generate effective paths in multi-obstacle environment where other algorithms cannot. Finally the simulation results verified the reasonability and practicability of the proposed MAPF method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10295
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12869
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sombolestan, S.M., Rasooli, A., Khodaygan, S.: Optimal path-planning for mobile robots to find a hidden target in an unknown environment based on machine learning. J. Ambient. Intell. Humaniz. Comput. 10, 1841–1850 (2019). https://doi.org/10.1007/s12652-018-0777-4

    Article  Google Scholar 

  2. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 28–29 (1972)

    Google Scholar 

  3. Koenig, S., Likhachev, M.: Fast replanning for navigation in unknown terrain. IEEE Trans. Rob. 21(3), 354–363 (2005)

    Article  Google Scholar 

  4. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986)

    Article  Google Scholar 

  5. Huang, Y., Hu, H., Liu, X.: Obstacles avoidance of artificial potential field method with memory function in complex environment. In: Proceedings of the 8th World Congress on Intelligent Control and Automation, pp. 6414–6418 (2010)

    Google Scholar 

  6. Qian, C., Qisong, Z., Li, H.: Improved artificial potential field method for dynamic target path planning in LBS. In: Proceedings of Chinese Control and Decision Conference (CCDC), pp. 2710–2714 (2018)

    Google Scholar 

  7. Fang, W., Fengyu, Z., Lei, Y.: Global path planning algorithm of mobile robot based on electric potential field. Robot. 41(6), 742–750 (2019)

    Google Scholar 

  8. Liang, X., Liu, C., Song, X., et al.: Research on improved artificial potential field approach in local path planning for mobile robot. Comput. Simul. 35(4), 291–361 (2018)

    Google Scholar 

  9. Wang, S., Zhao, T., Li, W.: Mobile robot path planning based on improved artificial potential field method. In: Proceedings of IEEE International Conference of Intelligent Robotic and Control Engineering (IRCE), pp. 29–33. IEEE (2018)

    Google Scholar 

  10. Chen, W., Wu, X., Lu, Y.: An improved path planning method based on artificial potential field for a mobile robot. Cybern. Inf. Technol. 15(2), 181–191 (2015)

    MathSciNet  Google Scholar 

  11. Wang, D., Li, C., Guo, N., et al.: Local path planning of mobile robot based on artificial potential field. In: Proceedings of 39th Chinese Control Conference (CCC), pp. 25–30 (2021)

    Google Scholar 

Download references

Acknowledgment

This work is mainly supported by National Key Research and Development Program of China (No. 2022YFB4702000) and Shenzhen Polytechnic Research Fund (6023310005K).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mo, J., Gao, C., Liu, F., Yang, Q., Fang, H. (2023). A Modified Artificial Potential Field Method Based on Subgoal Points for Mobile Robot. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14267. Springer, Singapore. https://doi.org/10.1007/978-981-99-6483-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6483-3_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6482-6

  • Online ISBN: 978-981-99-6483-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics