Abstract
Advances in technology, jointly with technology transfer and the digital transformation is leading to a new industrial revolution where digitalization enables the improvement of production and safety as well as operational effectiveness by monitoring, diagnosing and correcting process flaws. In this work, we propose a Digital Twin (DT) of a public transportation system in Badalona (Spain) for obtaining in depth understanding of the bus dynamics. We use a genetic algorithm for finding the most suitable configurations for simulating the traffic in a city based on real data. Results show that the proposed DT accurately reproduces the real traffic, the bus schedule and that it easily adapts to possible anomalies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allen, B.D.: Digital twins and living models at NASA. Technical report, Digital Twin Summit (2021). https://ntrs.nasa.gov/citations/20210023699
Alonso, R., Borras, M., Koppelaar, R.H.E.M., Lodigiani, A., Loscos, E., Yöntem, E.: SPHERE: BIM digital twin platform. Proceedings 20(1), 1 (2019)
Barricelli, B.R., Casiraghi, E., Fogli, D.: A survey on digital twin: definitions, characteristics, applications, and design implications. IEEE Access 7, 167653–167671 (2019)
Behrisch, M., Bieker, L., Erdmann, J., Krajzewicz, D.: SUMO - simulation of urban mobility: an overview. In: International Conference on Advances in System Simulation (2011)
Bellinger, N., Tuegel, E.J., Ingraffea, A.R., Eason, Thomas, G., Spottswood, S.M.: Reengineering aircraft structural life prediction using a digital twin. Int. J. Aerosp. Eng. 1687–5966 (2011)
Berisha-Gawlowski, A., Caruso, C., Harteis, C.: The concept of a digital twin and its potential for learning organizations. In: Ifenthaler, D., Hofhues, S., Egloffstein, M., Helbig, C. (eds.) Digital Transformation of Learning Organizations, pp. 95–114. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55878-9_6
Botín-Sanabria, D.M., et al.: Digital twin for a vehicle: electrobus case study. In: International Conference on Industrial Engineering and Operations Management (2021)
Chinesta, F., Cueto, E., Abisset-Chavanne, E., Duval, J.L., Khaldi, F.E.: Virtual, digital and hybrid twins: a new paradigm in data-based engineering and engineered data. Arch. Comp. Methods Eng. 27(1), 105–134 (2020)
Deb, K., Kumar, A.: Real-coded genetic algorithms with simulated binary crossover: studies on multimodal and multiobjective problems. Complex Syst. 9(6), 431–454 (1995)
Deloitte Insights: Digital twins bridging the physical and digital (2020). https://www2.deloitte.com/us/en/insights/focus/tech-trends/2020/digital-twin-applications-bridging-the-physical-and-digital.html
Deng, S., Zhong, J., Chen, S., He, Z.: Digital twin modeling for demand responsive transit, pp. 410–413. Institute of Electrical and Electronics Engineers Inc. (2021)
Deren, L., Wenbo, Y., Zhenfeng, S.: Smart city based on digital twins. Comput. Urban Sci. 1, 1–11 (2021)
DLR and contributors: SUMO homepage. https://www.eclipse.org/sumo/
Dorronsoro, B., Ruiz, P., Danoy, G., Pigne, Y., Bouvry, P.: Evolutionary Algorithms for Mobile Ad Hoc Networks. ACM/IEEE Society (2014)
Gao, Y., Qian, S., Li, Z., Wang, P., Wang, F., He, Q.: Digital twin and its application in transportation infrastructure. In: IEEE International Conference on Digital Twins and Parallel Intelligence, pp. 298–301 (2021)
GAVS Technologies: Digital twin concept (2017). https://www.gavstech.com/wp-content/uploads/2017/10/Digital_Twin_Concept.pdf
Grieves, M.: Digital twin: manufacturing excellence through virtual factory replication (2014). https://www.3ds.com/fileadmin/PRODUCTS-SERVICES/DELMIA/PDF/Whitepaper/DELMIA-APRISO-Digital-Twin-Whitepaper.pdf
Grieves, M.W.: Virtually intelligent product systems: digital and physical twins, pp. 175–200 (2019)
Laaki, H., Miche, Y., Tammi, K.: Prototyping a digital twin for real time remote control over mobile networks: application of remote surgery. IEEE Access 7, 20325–20336 (2019)
MARKETSANDMARKETS: Digital twin market by enterprise, application (predictive maintenance, business optimization), industry (aerospace, automotive & transportation, healthcare, infrastructure, energy & utilities) and geography - global forecast to 2027 (2022). https://www.marketsandmarkets.com/Market-Reports/digital-twin-market-225269522.html?gclid=Cj0KCQjwrs2XBhDjARIsAHVymmTo3ZZI9HhY0PuBwQMOTROTNX4XrmfNTG2yabssY5uvP7kOg4taJnEaAgm1EALw_wcB
Merkle, L., Pöthig, M., Schmid, F.: Estimate e-golf battery state using diagnostic data and a digital twin. Batteries 7(1), 15 (2021)
Piascik, R., et al.: Technology area 12: materials, structures, mechanical systems, and manufacturing road map (2010)
Rasheed, A., San, O., Kvamsdal, T.: Digital twin: values, challenges and enablers from a modeling perspective. IEEE Access 8, 21980–22012 (2020)
Rodríguez, B., Sanjurjo, E., Tranchero, M., Romano, C., González, F.: Thermal parameter and state estimation for digital twins of e-powertrain components. IEEE Access 9, 97384–97400 (2021)
Seredynski, M., Danoy, G., Tabatabaei, M., Bouvry, P., Pigné, Y.: Generation of realistic mobility for VANETs using genetic algorithms. In: IEEE Congress on Evolutionary Computation, pp. 1–8 (2012)
Szalay, Z.: Next generation x-in-the-loop validation methodology for automated vehicle systems. IEEE Access 9, 35616–35632 (2021)
Tao, F., et al.: Digital twin-driven product design framework. Int. J. Prod. Res. 57(12), 3935–3953 (2019)
Van Den Berghe, S.: A processing architecture for real-time predictive smart city digital twins. In: IEEE International Conference on Big Data, pp. 2867–2874 (2021)
Van Mierlo, J., et al.: Beyond the state of the art of electric vehicles: a fact-based paper of the current and prospective electric vehicle technologies. World Electr. Veh. J. 12(1), 20 (2021)
Yu, W., Patros, P., Young, B., Klinac, E., Walmsley, T.G.: Energy digital twin technology for industrial energy management: classification, challenges and future. Renew. Sustain. Energy Rev. 161, 112407 (2022)
Acknowledgements
This work was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades and the ERDF (iSUN – RTI2018-100754-B-I00), Junta de Andalucía and ERDF under contract P18-2399 (GENIUS), and ERDF under project (OPTIMALE – FEDER-UCA18-108393). This publication is part of the project TED2021-131880B-I00, funded MCIN/AEI/10.13039/501100011033 and the European Union “NextGenerationEU”/PRTR. B. Dorronsoro and P. Ruiz acknowledge “ayuda de recualificación” funding by Ministerio de Universidades and the European Union-NextGenerationEU.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Ruiz, P., Seredynski, M., Torné, Á., Dorronsoro, B. (2023). A Digital Twin for Bus Operation in Public Urban Transportation Systems. In: Hsu, CH., Xu, M., Cao, H., Baghban, H., Shawkat Ali, A.B.M. (eds) Big Data Intelligence and Computing. DataCom 2022. Lecture Notes in Computer Science, vol 13864. Springer, Singapore. https://doi.org/10.1007/978-981-99-2233-8_3
Download citation
DOI: https://doi.org/10.1007/978-981-99-2233-8_3
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-2232-1
Online ISBN: 978-981-99-2233-8
eBook Packages: Computer ScienceComputer Science (R0)