Abstract
Aiming at the needs of civil market tasks such as autonomous swimming display of pools in the aquarium and special tasks such as intelligent autonomous patrol in specific water areas, this paper proposes a task driven control method for manta robot to circumnavigate around the shores. We equip the robot fish with a complete information sensing network and realize its driving and yaw control basing on the CPG phase oscillator network. We generate an offline look-up table by using fuzzy control method, and realize the closed-loop control of heading by looking up this table. Basing on the requirements of the circumnavigation task, we propose a real-time obstacle avoidance strategy combined with the infrared range sensor information. Finally, we build an experimental pool platform to conduct underwater alongshore circumnavigating experiments of the robot fish, and the experimental results prove the effectiveness of the overall scheme.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, T., Yang, X., Liang, J.: A survey on bionic autonomous underwater vehicles propelled by median and/or paired fin mode. Robots 35(03), 352–362+384 (2013)
Zhang, Q., Xue, Z.: Research on obstacle avoidance of robofish based on fuzzy control. J. Qinghai Univ. 34(03), 78–83 (2016)
Li, Q., Gao, J., Xie, G., et al.: Obstacle avoidance algorithm of bionic robot fish based on fuzzy control. Ordnance Ind. Autom. 30(12), 65–69 (2011)
Sang, H.Q., Wang, S., Tan, M., et al.: Autonomous obstacle avoidance of biomimetic robotfish based on infrared sensor. J. Syst. Simul. 06, 1400–1404 (2005)
Wang, J., Niu, F., Zhang, W.: Obstacle avoidance algorithm for snake like robot based on ultrasonic ranging. Electron. Qual. (08), 63–67 (2021)
Zhuang, Y., Teng, H., Xu, T., et al.: Obstacle avoidance control of wall-climbing robot based on degraded fuzzy algorithms. Sci. Technol. Eng. 20(19), 7729–7736 (2020)
Cao, Y., Bi, S., Cai, Y., Wang, Y.: Applying central pattern generators to control the robofish with oscillating pectoral fins. Ind. Robot Int. J. 42(5), 392–405 (2015)
Fu, Y., Cao, Z., Wang, S., et al.: Application of sensors in real-time obstacle avoidance of multi-joint robot system. Robot (01), 73–79 (2003)
Cao, Y., Xie, Y., He, Y., Pan, G., Huang, Q., Cao, Y.: Bioinspired central pattern generator and T-S fuzzy neural network-based control of a robotic manta for depth and heading tracking. J. Mar. Sci. Eng. 10, 758 (2022). https://doi.org/10.3390/jmse10060758
Hao, Y., Cao, Y., Cao, Y., Huang, Q., Pan, G.: Course control of a manta robot based on amplitude and phase differences. J. Mar. Sci. Eng. 10, 285 (2022). https://doi.org/10.3390/jmse10020285
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Yang, B., Cao, Y., Xie, Y., Cao, Y., Pan, G. (2023). Alongshore Circumnavigating Control of a Manta Robot Based on Fuzzy Control and an Obstacle Avoidance Strategy. In: Sun, F., Cangelosi, A., Zhang, J., Yu, Y., Liu, H., Fang, B. (eds) Cognitive Systems and Information Processing. ICCSIP 2022. Communications in Computer and Information Science, vol 1787. Springer, Singapore. https://doi.org/10.1007/978-981-99-0617-8_29
Download citation
DOI: https://doi.org/10.1007/978-981-99-0617-8_29
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-0616-1
Online ISBN: 978-981-99-0617-8
eBook Packages: Computer ScienceComputer Science (R0)