Abstract
Predicting the future trajectories of agents in complex traffic scene is one of the key issues in autonomous driving, requiring reliable and effective predictions for all agents in the scene. Existing trajectory prediction models have achieved high performance on public datasets, but deploying models on vehicles requires both high accuracy and fast computation. It is necessary to balance the complexity of computation and the effectiveness of the structure when designing model. To address the above problem, we proposes a lightweight trajectory prediction model HHATP. Our method is scene-centric and located in the same coordinate system. We use different encoders for the heterogeneous scene objects and the encoded results are then fed into a hierarchical attention module, which considers both global and local interaction to model the relationships between elements. Subsequently, a dynamic weight decoder is used to obtain the trajectories of all agents. Our method achieves good accuracy on the Argoverse dataset and enables fast inference.
This work was supported by the National Key Research and Development Program of China under Grant 2020AAA0108103.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Aydemir, G., Akan, A.K., Güney, F.: Adapt: efficient multi-agent trajectory prediction with adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8295–8305 (2023)
Caesar, H., Bankiti, V., Lang, A.H., Vora, S., Liong, V.E., Xu, Q., Krishnan, A., Pan, Y., Baldan, G., Beijbom, O.: Nuscenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)
Chai, Y., Sapp, B., Bansal, M., Anguelov, D.: Multipath: multiple probabilistic anchor trajectory hypotheses for behavior prediction (2019). arXiv:1910.05449
Chang, M.F., Lambert, J., Sangkloy, P., Singh, J., Bak, S., Hartnett, A., Wang, D., Carr, P., Lucey, S., Ramanan, D., et al.: Argoverse: 3d tracking and forecasting with rich maps. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8748–8757 (2019)
Chen, J., Wang, Z., Wang, J., Cai, B.: Q-eanet: Implicit social modeling for trajectory prediction via experience-anchored queries. IET Intell. Transp. Syst. (2023)
Cui, H., Radosavljevic, V., Chou, F.C., Lin, T.H., Nguyen, T., Huang, T.K., Schneider, J., Djuric, N.: Multimodal trajectory predictions for autonomous driving using deep convolutional networks. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 2090–2096. IEEE (2019)
Djuric, N., Radosavljevic, V., Cui, H., Nguyen, T., Chou, F.C., Lin, T.H., Singh, N., Schneider, J.: Uncertainty-aware short-term motion prediction of traffic actors for autonomous driving. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2095–2104 (2020)
Gao, J., Sun, C., Zhao, H., Shen, Y., Anguelov, D., Li, C., Schmid, C.: Vectornet: encoding hd maps and agent dynamics from vectorized representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11525–11533 (2020)
Gilles, T., Sabatini, S., Tsishkou, D., Stanciulescu, B., Moutarde, F.: Thomas: trajectory heatmap output with learned multi-agent sampling (2021). arXiv:2110.06607
Gilles, T., Sabatini, S., Tsishkou, D., Stanciulescu, B., Moutarde, F.: Gohome: Graph-oriented heatmap output for future motion estimation. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 9107–9114. IEEE (2022)
Girgis, R., Golemo, F., Codevilla, F., Weiss, M., D’Souza, J.A., Kahou, S.E., Heide, F., Pal, C.: Latent variable sequential set transformers for joint multi-agent motion prediction (2021). arXiv:2104.00563
Graves, A., Graves, A.: Long short-term memory. In: Supervised Sequence Labelling with Recurrent Neural Networks, pp. 37–45 (2012)
Gu, J., Sun, C., Zhao, H.: Densetnt: end-to-end trajectory prediction from dense goal sets. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15303–15312 (2021)
Jia, X., Wu, P., Chen, L., Liu, Y., Li, H., Yan, J.: Hdgt: heterogeneous driving graph transformer for multi-agent trajectory prediction via scene encoding. IEEE Trans. Pattern Anal. Mach. Intell. (2023)
Liang, M., Yang, B., Hu, R., Chen, Y., Liao, R., Feng, S., Urtasun, R.: Learning lane graph representations for motion forecasting. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16, pp. 541–556. Springer (2020)
Liu, Y., Zhang, J., Fang, L., Jiang, Q., Zhou, B.: Multimodal motion prediction with stacked transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7577–7586 (2021)
Mercat, J., Gilles, T., El Zoghby, N., Sandou, G., Beauvois, D., Gil, G.P.: Multi-head attention for multi-modal joint vehicle motion forecasting. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 9638–9644. IEEE (2020)
Ngiam, J., Caine, B., Vasudevan, V., Zhang, Z., Chiang, H.T.L., Ling, J., Roelofs, R., Bewley, A., Liu, C., Venugopal, A., et al.: Scene transformer: a unified architecture for predicting multiple agent trajectories (2021). arXiv:2106.08417
Park, D., Ryu, H., Yang, Y., Cho, J., Kim, J., Yoon, K.J.: Leveraging future relationship reasoning for vehicle trajectory prediction (2023). arXiv:2305.14715
Salzmann, T., Ivanovic, B., Chakravarty, P., Pavone, M.: Trajectron++: Dynamically-feasible trajectory forecasting with heterogeneous data. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVIII 16, pp. 683–700. Springer (2020)
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)
Wang, J., Ye, T., Gu, Z., Chen, J.: Ltp: lane-based trajectory prediction for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17134–17142 (2022)
Ye, M., Cao, T., Chen, Q.: Tpcn: temporal point cloud networks for motion forecasting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11318–11327 (2021)
Yu, C., Ma, X., Ren, J., Zhao, H., Yi, S.: Spatio-temporal graph transformer networks for pedestrian trajectory prediction. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XII 16, pp. 507–523. Springer (2020)
Yuan, Y., Weng, X., Ou, Y., Kitani, K.M.: Agentformer: agent-aware transformers for socio-temporal multi-agent forecasting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9813–9823 (2021)
Zhao, H., Gao, J., Lan, T., Sun, C., Sapp, B., Varadarajan, B., Shen, Y., Shen, Y., Chai, Y., Schmid, C., et al.: Tnt: target-driven trajectory prediction. In: Conference on Robot Learning, pp. 895–904. PMLR (2021)
Zhou, Z., Wang, J., Li, Y.H., Huang, Y.K.: Query-centric trajectory prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17863–17873 (2023)
Zhou, Z., Ye, L., Wang, J., Wu, K., Lu, K.: Hivt: hierarchical vector transformer for multi-agent motion prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8823–8833 (2022)
Zhu, L., Wang, X., Ke, Z., Zhang, W., Lau, R.W.: Biformer: vision transformer with bi-level routing attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10323–10333 (2023)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Lai, Z., Zhu, X., Yang, C., Kong, B. (2025). HHATP: A Lightweight Heterogeneous Hierarchical Attention Model for Trajectory Prediction. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15040. Springer, Singapore. https://doi.org/10.1007/978-981-97-8792-0_9
Download citation
DOI: https://doi.org/10.1007/978-981-97-8792-0_9
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-8791-3
Online ISBN: 978-981-97-8792-0
eBook Packages: Computer ScienceComputer Science (R0)