Abstract
Constructing covert channels on blockchains has recently become a significant research focus. A major challenge lies in embedding data into blockchain transactions, while maintaining strong concealment. This study focuses on utilizing blockchain transaction values as a carrier, exploring methods to ensure that the distribution of values with embedded data mimics that of standard transactions. Initially, we gathered authentic blockchain transaction data, conducted a frequency analysis on the transaction values, and filtered out abnormal values to establish a baseline normal value dataset. Subsequently, we employed a Restricted Boltzmann Machine (RBM) to generate a simulated value dataset that mirrors the distribution of the normal dataset, facilitating the embedding of data within the simulated value dataset. By fine-tuning the number of bits embedded in the values, we achieved a value dataset with embedded data that closely resembles the normal distribution. We have calculated the Kullback-Leibler Divergence and the Kolmogorov-Smirnov Test between the value dataset with embedded data and the normal value dataset under various embedding scenarios, revealing that the changes to the original dataset are minimal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andrey, F.: Exploring covert channels in bitcoin transactions. In: 2019 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), pp. 59–64 (2019)
Bitcoin developer. Transactions. https://developer.bitcoin.org/reference/transactions.html. Accessed 05 May 2024
Lampson, B.W.: A note on the confinement problem. Commun. ACM 16(10), 613–615 (1973)
Chen, Z., et al.: Blockchain meets covert communication: a survey. IEEE Commun. Surv. Tutor. 24(4), 2163–2192 (2022)
Duan, S., et al.: Dashing and star: byzantine fault tolerance with weak certificates. In: Proceedings of the Nineteenth European Conference on Computer Systems, EuroSys 2024, pp. 250–264. Association for Computing Machinery,, New York (2024)
Fischer, A., Igel, C.: An introduction to restricted Boltzmann machines. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 14–36. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33275-3_2
Guo, B., Lu, Z., Tang, Q., Xu, J., Zhang, Z.: Dumbo: faster asynchronous bft protocols. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, CCS 2020, pp. 803–818. Association for Computing Machinery, New York (2020)
Simmons, G.J.: The Prisoners’ problem and the subliminal channel, pp. 51–67. Springer, Boston (1984). https://doi.org/10.1007/978-1-4684-4730-9_5
Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)
Kurt, A., Erdin, E., Cebe, M., Akkaya, K., Uluagac, A.S.: Lnbot: a covert hybrid botnet on bitcoin lightning network for fun and profit. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) Computer Security - ESORICS 2020. pp, pp. 734–755. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59013-0_36
Liu, S., et al.: Whispers on ethereum: blockchain-based covert data embedding schemes. In: Proceedings of the 2nd ACM International Symposium on Blockchain and Secure Critical Infrastructure, BSCI 2020, pp. 171–179. Association for Computing Machinery, New York (2020)
Luo, X., Zhang, P., Zhang, M., Li, H., Cheng, Q.: A novel covert communication method based on bitcoin transaction. IEEE Trans. Ind. Inf. 18(4), 2830–2839 (2022)
Lv, J., Cao, X.: Covert communication technology based on Bitcoin. J. Cyber Secur. 6(2), 143–152 (2021)
Partala, J.: Provably secure covert communication on blockchain. Cryptography 2(33), 18 (2018)
Resnik, P., Hardisty, E.A.: Gibbs sampling for the uninitiated (2010). https://api.semanticscholar.org/CorpusID:14173412. Accessed 05 May 2024
Satoshi, N.: Bitcoin: a peer-to-peer electronic cash system (2008). https://bitcoin.org/bitcoin.pdf. Accessed 05 May 2024
Sleiman, M.D., Lauf, A.P., Yampolskiy, R.: Bitcoin message: data insertion on a proof-of-work cryptocurrency system. In: 2015 International Conference on Cyberworlds (CW), pp. 332–336 (2015)
Smolensky, P.: Information Processing in Dynamical Systems: Foundations of Harmony Theory, pp. 194–281. MIT Press, Cambridge (1986)
Tieleman, T.: Training restricted boltzmann machines using approximations to the likelihood gradient. In: Proceedings of the 25th International Conference on Machine Learning, pp. 1064–1071 (2008)
Torki, O., Ashouri-Talouki, M., Mahdavi, M.: Blockchain for steganography: advantages, new algorithms and open challenges. In: 2021 18th International ISC Conference on Information Security and Cryptology (ISCISC), pp. 1–5 (2021)
Vitalik, B.: Ethereum: a next-generation smart contract and decentralized application platform (2014). https://ethereum.org/. Accessed 05 May 2024
Vitalik, B., et al.: Combining ghost and casper (2020). https://arxiv.org/abs/2003.03052. Accessed 05 May 2024
Zhang, T., Li, B., Zhu, Y., Han, T., Wu, Q.: Covert channels in blockchain and blockchain based covert communication: overview, state-of-the-art, and future directions. Comput. Commun. 205(C), 136–146 (2023)
Zhang, T., Wu, Q., Zongxun, T.: Bitcoin blockchain based information convert transmission. Chin. J. Netw. Inf. Secur. 7(1), 84–92 (2021)
Acknowledgement
This work is supported by the the National Key R&D Program of China under Grant No. 2022YFB2701500 and Guangdong Provincial Key Laboratory of Information Security Technology (No.2023B1212060026).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
An, J., Tian, H. (2025). Embedding Data in Bitcoin Transaction Values with Restricted Boltzmann Machine. In: Chen, X., Huang, X., Yung, M. (eds) Data Security and Privacy Protection. DSPP 2024. Lecture Notes in Computer Science, vol 15215. Springer, Singapore. https://doi.org/10.1007/978-981-97-8540-7_2
Download citation
DOI: https://doi.org/10.1007/978-981-97-8540-7_2
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-8539-1
Online ISBN: 978-981-97-8540-7
eBook Packages: Computer ScienceComputer Science (R0)