An Efficient Threshold Ring Signature from G+G Identification Protocol | SpringerLink
Skip to main content

An Efficient Threshold Ring Signature from G+G Identification Protocol

  • Conference paper
  • First Online:
Data Security and Privacy Protection (DSPP 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15215))

Included in the following conference series:

  • 188 Accesses

Abstract

Threshold ring signature confirms that t signers are participating in the signature and keep them anonymous. It is a generalization of ring signature, and has many important applications such as whistleblower, e-voting and blockchain et al. In this paper, an improved lattice-based ring signature and threshold ring signature scheme from Fiat-Shamir heuristic are proposed. The schemes eliminte the dependence on Stern-like identification protocols and have much shorter signature sizes. We also use the Gaussian convolution technique (G+G) presented by Devevey et al. in Asiacrypt 2023 to remove the reject-sampling in BLISS. This allows the threshold ring signature to overcome the proof issue caused by “abort” and achieve higher computation efficiency than previous ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Avitabile, G., Botta, V., Fiore, D.: Extendable threshold ring signatures with enhanced anonymity. In: Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023. LNCS, vol. 13940, pp. 281–311. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-31368-4_11

    Chapter  Google Scholar 

  2. Bettaieb, S., Schrek, J.: Improved lattice-based threshold ring signature scheme. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 34–51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9_3

    Chapter  Google Scholar 

  3. Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_30

    Chapter  Google Scholar 

  4. Cayrel, P.-L., Lindner, R., Rückert, M., Silva, R.: A lattice-based threshold ring signature scheme. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 255–272. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14712-8_16

    Chapter  Google Scholar 

  5. Dallot, L., Vergnaud, D.: Provably secure code-based threshold ring signatures. In: Parker, M.G. (ed.) IMACC 2009. LNCS, vol. 5921, pp. 222–235. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10868-6_13

    Chapter  Google Scholar 

  6. Damgård, I., Orlandi, C., Takahashi, A., Tibouchi, M.: Two-round n-out-of-n and multi-signatures and trapdoor commitment from lattices. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12710, pp. 99–130. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75245-3_5

    Chapter  Google Scholar 

  7. Devevey, J., Passelègue, A., Stehlé, D.: G+G: a Fiat-Shamir lattice signature based on convolved Gaussians. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023. LNCS, vol. 14444, pp. 37–64. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-8739-9_2

    Chapter  Google Scholar 

  8. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_3

    Chapter  Google Scholar 

  9. Haque, A., Scafuro, A.: Threshold ring signatures: new definitions and post-quantum security. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 423–452. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6_15

    Chapter  Google Scholar 

  10. Liu, J.K., Wei, V.K., Wong, D.S.: A separable threshold ring signature scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 12–26. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24691-6_2

    Chapter  Google Scholar 

  11. Aguilar Melchor, C., Cayrel, P.-L., Gaborit, P.: A new efficient threshold ring signature scheme based on coding theory. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 1–16. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88403-3_1

    Chapter  Google Scholar 

  12. Okamoto, T., Tso, R., Yamaguchi, M., Okamoto, E.: A \(k\)-out-of-\(n\) ring signature with flexible participation for signers. Cryptology ePrint Archive, Paper 2018/728 (2018). https://eprint.iacr.org/2018/728

  13. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_32

    Chapter  Google Scholar 

  14. Yuen, T.H., Esgin, M.F., Liu, J.K., Au, M.H., Ding, Z.: DualRing: generic construction of ring signatures with efficient instantiations. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 251–281. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_10

    Chapter  Google Scholar 

Download references

Acknowledgement

This work is supported by National Key Research and Development Program of China (No. 2022YFB2701504), National Natural Science Foundation of China (No. 61902081), Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515011512), the Opening Project of Guangdong Provincial Key Laboratory of Information Security Technology (No. 2023B1212060026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusong Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, C., Jiang, S., Zhang, F., Du, Y., Lin, Q. (2025). An Efficient Threshold Ring Signature from G+G Identification Protocol. In: Chen, X., Huang, X., Yung, M. (eds) Data Security and Privacy Protection. DSPP 2024. Lecture Notes in Computer Science, vol 15215. Springer, Singapore. https://doi.org/10.1007/978-981-97-8540-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8540-7_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8539-1

  • Online ISBN: 978-981-97-8540-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics