Abstract
Threshold ring signature confirms that t signers are participating in the signature and keep them anonymous. It is a generalization of ring signature, and has many important applications such as whistleblower, e-voting and blockchain et al. In this paper, an improved lattice-based ring signature and threshold ring signature scheme from Fiat-Shamir heuristic are proposed. The schemes eliminte the dependence on Stern-like identification protocols and have much shorter signature sizes. We also use the Gaussian convolution technique (G+G) presented by Devevey et al. in Asiacrypt 2023 to remove the reject-sampling in BLISS. This allows the threshold ring signature to overcome the proof issue caused by “abort” and achieve higher computation efficiency than previous ones.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Avitabile, G., Botta, V., Fiore, D.: Extendable threshold ring signatures with enhanced anonymity. In: Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023. LNCS, vol. 13940, pp. 281–311. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-31368-4_11
Bettaieb, S., Schrek, J.: Improved lattice-based threshold ring signature scheme. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 34–51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9_3
Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_30
Cayrel, P.-L., Lindner, R., Rückert, M., Silva, R.: A lattice-based threshold ring signature scheme. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 255–272. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14712-8_16
Dallot, L., Vergnaud, D.: Provably secure code-based threshold ring signatures. In: Parker, M.G. (ed.) IMACC 2009. LNCS, vol. 5921, pp. 222–235. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10868-6_13
Damgård, I., Orlandi, C., Takahashi, A., Tibouchi, M.: Two-round n-out-of-n and multi-signatures and trapdoor commitment from lattices. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12710, pp. 99–130. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75245-3_5
Devevey, J., Passelègue, A., Stehlé, D.: G+G: a Fiat-Shamir lattice signature based on convolved Gaussians. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023. LNCS, vol. 14444, pp. 37–64. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-8739-9_2
Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_3
Haque, A., Scafuro, A.: Threshold ring signatures: new definitions and post-quantum security. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 423–452. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45388-6_15
Liu, J.K., Wei, V.K., Wong, D.S.: A separable threshold ring signature scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 12–26. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24691-6_2
Aguilar Melchor, C., Cayrel, P.-L., Gaborit, P.: A new efficient threshold ring signature scheme based on coding theory. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 1–16. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88403-3_1
Okamoto, T., Tso, R., Yamaguchi, M., Okamoto, E.: A \(k\)-out-of-\(n\) ring signature with flexible participation for signers. Cryptology ePrint Archive, Paper 2018/728 (2018). https://eprint.iacr.org/2018/728
Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_32
Yuen, T.H., Esgin, M.F., Liu, J.K., Au, M.H., Ding, Z.: DualRing: generic construction of ring signatures with efficient instantiations. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 251–281. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_10
Acknowledgement
This work is supported by National Key Research and Development Program of China (No. 2022YFB2701504), National Natural Science Foundation of China (No. 61902081), Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515011512), the Opening Project of Guangdong Provincial Key Laboratory of Information Security Technology (No. 2023B1212060026).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wu, C., Jiang, S., Zhang, F., Du, Y., Lin, Q. (2025). An Efficient Threshold Ring Signature from G+G Identification Protocol. In: Chen, X., Huang, X., Yung, M. (eds) Data Security and Privacy Protection. DSPP 2024. Lecture Notes in Computer Science, vol 15215. Springer, Singapore. https://doi.org/10.1007/978-981-97-8540-7_13
Download citation
DOI: https://doi.org/10.1007/978-981-97-8540-7_13
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-8539-1
Online ISBN: 978-981-97-8540-7
eBook Packages: Computer ScienceComputer Science (R0)