Real-Time Detection Transformer with Bi-Level Routing Attention | SpringerLink
Skip to main content

Real-Time Detection Transformer with Bi-Level Routing Attention

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15034))

Included in the following conference series:

  • 181 Accesses

Abstract

In recent years, DEtection TRansformer (DETR) has achieved remarkable performance for traffic monitoring. However, due to the typically high computational complexity of transformers, DETR encounters performance bottlenecks in resource-constrained scenarios. To solve the above problems, Real-Time DEtection TRansformer (RT-DETR) was recently proposed. The efficient design of RT-DETR allows for real-time object detection without sacrificing accuracy. But the model still requires a large amount of computing resources, which may limit its deployment on resource constrained devices. To make the model more lightweight, we propose a Real-Time DEtection TRansformer with Bi-Level Routing Attention (RDETR-BRA). Specifically, we incorporated an efficient hybrid encoder based on bi-level routing attention, which efficiently processes multi-scale features by decoupling intra scale interactions and inter scale fusion. Experimental results show that the RDETR-BRA effectively improves the accuracy and precision of object detection in road scenarios. On the BDD100K and Udacity datasets, the average precision of RDETR-BRA is improved by 0.6 percentage points compared to RT-DETR and 18 percentage points compared to RetinaNet. Additionally, the parameter count is reduced from 42M (RT-DETR) to 34M.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  2. Cai, Z., Vasconcelos, N.: Cascade r-cnn: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)

    Google Scholar 

  3. Carion, N., Massa, F., Synnaeve, G., et al.: End-to-end object detection with transformers. In: European Conference on Computer Vision, pp. 213–229. Springer (2020)

    Google Scholar 

  4. Chen, Q., Chen, X., Zeng, G., Wang, J.: Group detr: fast training convergence with decoupled one-to-many label assignment. arXiv preprint arXiv:2207.130852(3), 12 (2022)

  5. Ge, Z., Liu, S., Wang, F., et al.: Yolox: exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430 (2021)

  6. Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  7. Glenn, J.: Yolov8. In: https://github.com/ultralytics/ultralytics/tree/main (2023)

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Jocher, G., Chaurasia, A., Stoken, A., et al.: Yolov5 release v7.0. https://github.com/ultralytics/yolov5/tree/v7.0 Zenodo (2022)

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25 (2012)

    Google Scholar 

  11. Li, C., Li, L., Geng, Y., et al.: Yolov6 v3. 0: a full-scale reloading. arXiv preprint arXiv:2301.05586 (2023)

  12. Li, F., Zhang, H., Liu, S., Guo, J., Ni, L.M., Zhang, L.: Dn-detr: accelerate detr training by introducing query denoising. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13619–13627 (2022)

    Google Scholar 

  13. Li, H., Li, J., Wei, H., et al.: Slim-neck by gsconv: a better design paradigm of detector architectures for autonomous vehicles. arXiv preprint arXiv:2206.02424 (2022)

  14. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  15. Lin, T.Y., Goyal, P., Girshick, R., et al.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  16. Liu, S., Li, F., Zhang, H., Yang, X., Qi, X., Su, H., Zhu, J., Zhang, L.: Dab-detr: dynamic anchor boxes are better queries for detr. arXiv preprint arXiv:2201.12329 (2022)

  17. Liu, W., Lu, H., Fu, H., et al.: Learning to upsample by learning to sample. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6027–6037 (2023)

    Google Scholar 

  18. Meng, D., Chen, X., Fan, Z., Zeng, G., Li, H., Yuan, Y., Sun, L., Wang, J.: Conditional detr for fast training convergence. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3651–3660 (2021)

    Google Scholar 

  19. Neubeck, A., Van Gool, L.: Efficient non-maximum suppression. In: 18th International Conference on Pattern Recognition (ICPR’06), vol. 3, pp. 850–855. IEEE (2006)

    Google Scholar 

  20. Ren, S., He, K., Girshick, R., et al.: Faster r-cnn: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)

    Google Scholar 

  21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  22. Sun, P., Zhang, R., Jiang, Y., et al.: Sparse r-cnn: end-to-end object detection with learnable proposals. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14454–14463 (2021)

    Google Scholar 

  23. Tian, Z., Shen, C., Chen, H., et al.: Fcos: fully convolutional one-stage object detection. arxiv 2019. arXiv preprint arXiv:1904.01355 (2019)

  24. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: Yolov7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7464–7475 (2023)

    Google Scholar 

  25. Wang, J., Song, L., Li, Z., Sun, H., Sun, J., Zheng, N.: End-to-end object detection with fully convolutional network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15849–15858 (2021)

    Google Scholar 

  26. Wang, Y., Zhang, X., Yang, T., Sun, J.: Anchor detr: query design for transformer-based detector. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2567–2575 (2022)

    Google Scholar 

  27. Yao, Z., Ai, J., Li, B., Zhang, C.: Efficient detr: improving end-to-end object detector with dense prior. arXiv preprint arXiv:2104.01318 (2021)

  28. Zhang, H., Li, F., Liu, S., Zhang, L., Su, H., Zhu, J., Ni, L.M., Shum, H.Y.: Dino: Detr with improved denoising anchor boxes for end-to-end object detection. arXiv preprint arXiv:2203.03605 (2022)

  29. Zhao, Y., Lv, W., Xu, S., et al.: Detrs beat yolos on real-time object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16965–16974 (2024)

    Google Scholar 

  30. Zhu, L., Wang, X., Ke, Z., et al.: Biformer: vision transformer with bi-level routing attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10323–10333 (2023)

    Google Scholar 

  31. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

Download references

Acknowledgements

This work was supported in part by Guangxi Science and Technology Project under Grant 2019GXNSFFA245014, and Grant ZY20198016, in part by the National Natural Science Foundation of China under Grant 62172120, Grant 62002082 and Grant 6202780103, in part by the Innovation Project of GUET Gurduate Education under Grant 2024YCXS058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rushi Lan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, X., Yuan, S., Li, B., Lan, R., Luo, X. (2025). Real-Time Detection Transformer with Bi-Level Routing Attention. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15034. Springer, Singapore. https://doi.org/10.1007/978-981-97-8505-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8505-6_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8504-9

  • Online ISBN: 978-981-97-8505-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics