Abstract
In recent years, DEtection TRansformer (DETR) has achieved remarkable performance for traffic monitoring. However, due to the typically high computational complexity of transformers, DETR encounters performance bottlenecks in resource-constrained scenarios. To solve the above problems, Real-Time DEtection TRansformer (RT-DETR) was recently proposed. The efficient design of RT-DETR allows for real-time object detection without sacrificing accuracy. But the model still requires a large amount of computing resources, which may limit its deployment on resource constrained devices. To make the model more lightweight, we propose a Real-Time DEtection TRansformer with Bi-Level Routing Attention (RDETR-BRA). Specifically, we incorporated an efficient hybrid encoder based on bi-level routing attention, which efficiently processes multi-scale features by decoupling intra scale interactions and inter scale fusion. Experimental results show that the RDETR-BRA effectively improves the accuracy and precision of object detection in road scenarios. On the BDD100K and Udacity datasets, the average precision of RDETR-BRA is improved by 0.6 percentage points compared to RT-DETR and 18 percentage points compared to RetinaNet. Additionally, the parameter count is reduced from 42M (RT-DETR) to 34M.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)
Cai, Z., Vasconcelos, N.: Cascade r-cnn: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)
Carion, N., Massa, F., Synnaeve, G., et al.: End-to-end object detection with transformers. In: European Conference on Computer Vision, pp. 213–229. Springer (2020)
Chen, Q., Chen, X., Zeng, G., Wang, J.: Group detr: fast training convergence with decoupled one-to-many label assignment. arXiv preprint arXiv:2207.130852(3), 12 (2022)
Ge, Z., Liu, S., Wang, F., et al.: Yolox: exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430 (2021)
Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)
Glenn, J.: Yolov8. In: https://github.com/ultralytics/ultralytics/tree/main (2023)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Jocher, G., Chaurasia, A., Stoken, A., et al.: Yolov5 release v7.0. https://github.com/ultralytics/yolov5/tree/v7.0 Zenodo (2022)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25 (2012)
Li, C., Li, L., Geng, Y., et al.: Yolov6 v3. 0: a full-scale reloading. arXiv preprint arXiv:2301.05586 (2023)
Li, F., Zhang, H., Liu, S., Guo, J., Ni, L.M., Zhang, L.: Dn-detr: accelerate detr training by introducing query denoising. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13619–13627 (2022)
Li, H., Li, J., Wei, H., et al.: Slim-neck by gsconv: a better design paradigm of detector architectures for autonomous vehicles. arXiv preprint arXiv:2206.02424 (2022)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Lin, T.Y., Goyal, P., Girshick, R., et al.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Liu, S., Li, F., Zhang, H., Yang, X., Qi, X., Su, H., Zhu, J., Zhang, L.: Dab-detr: dynamic anchor boxes are better queries for detr. arXiv preprint arXiv:2201.12329 (2022)
Liu, W., Lu, H., Fu, H., et al.: Learning to upsample by learning to sample. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6027–6037 (2023)
Meng, D., Chen, X., Fan, Z., Zeng, G., Li, H., Yuan, Y., Sun, L., Wang, J.: Conditional detr for fast training convergence. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3651–3660 (2021)
Neubeck, A., Van Gool, L.: Efficient non-maximum suppression. In: 18th International Conference on Pattern Recognition (ICPR’06), vol. 3, pp. 850–855. IEEE (2006)
Ren, S., He, K., Girshick, R., et al.: Faster r-cnn: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Sun, P., Zhang, R., Jiang, Y., et al.: Sparse r-cnn: end-to-end object detection with learnable proposals. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14454–14463 (2021)
Tian, Z., Shen, C., Chen, H., et al.: Fcos: fully convolutional one-stage object detection. arxiv 2019. arXiv preprint arXiv:1904.01355 (2019)
Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: Yolov7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7464–7475 (2023)
Wang, J., Song, L., Li, Z., Sun, H., Sun, J., Zheng, N.: End-to-end object detection with fully convolutional network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15849–15858 (2021)
Wang, Y., Zhang, X., Yang, T., Sun, J.: Anchor detr: query design for transformer-based detector. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2567–2575 (2022)
Yao, Z., Ai, J., Li, B., Zhang, C.: Efficient detr: improving end-to-end object detector with dense prior. arXiv preprint arXiv:2104.01318 (2021)
Zhang, H., Li, F., Liu, S., Zhang, L., Su, H., Zhu, J., Ni, L.M., Shum, H.Y.: Dino: Detr with improved denoising anchor boxes for end-to-end object detection. arXiv preprint arXiv:2203.03605 (2022)
Zhao, Y., Lv, W., Xu, S., et al.: Detrs beat yolos on real-time object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16965–16974 (2024)
Zhu, L., Wang, X., Ke, Z., et al.: Biformer: vision transformer with bi-level routing attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10323–10333 (2023)
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)
Acknowledgements
This work was supported in part by Guangxi Science and Technology Project under Grant 2019GXNSFFA245014, and Grant ZY20198016, in part by the National Natural Science Foundation of China under Grant 62172120, Grant 62002082 and Grant 6202780103, in part by the Innovation Project of GUET Gurduate Education under Grant 2024YCXS058.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhao, X., Yuan, S., Li, B., Lan, R., Luo, X. (2025). Real-Time Detection Transformer with Bi-Level Routing Attention. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15034. Springer, Singapore. https://doi.org/10.1007/978-981-97-8505-6_22
Download citation
DOI: https://doi.org/10.1007/978-981-97-8505-6_22
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-8504-9
Online ISBN: 978-981-97-8505-6
eBook Packages: Computer ScienceComputer Science (R0)