TOP: Taxi Destination Prediction Based on Trajectory Knowledge Graph | SpringerLink
Skip to main content

TOP: Taxi Destination Prediction Based on Trajectory Knowledge Graph

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2024)

Abstract

Destination prediction is an important issue for location based services (LBSs) and intelligent urban traffic planning. Existing destination methods either ignore spatial correlations or temporal features of the trajectories. We propose four spatial ontologies and four relations to construct the trajectory knowledge graph, such that the spatial explicit and implicit features are captured. Then, we propose a new destination prediction method TOP w.r.t the trajectory knowledge graph and the embedded trajectories. Specifically, the relational graph convolutional network is used on the trajectory knowledge graph to obtain the embedding representation of the spatial entities; trajectories are transformed into embedding trajectories utilizing the embedding representation of the spatial entities; GRU is employed to learn the temporal features on the embedded trajectories; finally, external metadata, such as workdays, holidays, and departure time are fused together to predict the destination. We also conduct a series of experiments on a real dataset. The experimental results proved the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dan, P., Huang, M., Xing, Z.: Taxi origin and destination demand prediction based on deep learning: a review. Digital Trans. Saf. 2(3), 176–189 (2023)

    Article  Google Scholar 

  2. Tang, J., Liang, J., Yu, T.: Trip destination prediction based on a deep integration network by fusing multiple features from taxi trajectories. IET Intel.Transp. Syst. 15, 1131–1141 (2021)

    Google Scholar 

  3. Liao, C., Chen, C., Xiang, C.: Taxi-passenger’s destination prediction via GPS embedding and attention-based BILSTM model. IEEE Trans. Intel. Trans. Syst. 23(5), 4460–4473 (2021)

    Google Scholar 

  4. Lv, J., Sun, Q., Li, Q.: Multi-scale and multi-scope convolutional neural networks for destination prediction of trajectories. IEEE Trans. Intell. Transp. Syst. 21(8), 3184–3195 (2020)

    Article  Google Scholar 

  5. Zheng, J., Ni, L M.: Modeling heterogeneous routing decisions in trajectories for driving experience learning. In: Proceedings of the ACM Interactive Mobile Wearable Ubiquitous Technol, pp. 951–961 (2014)

    Google Scholar 

  6. Liu, S., Ni, L.M., Krishnan, R.: Fraud detection from taxis’ driving behaviors. IEEE Trans. Veh. Technol. 63(1), 464–472 (2014)

    Google Scholar 

  7. Besse, P.C., Guillouet, B., Loubes, J.M.: Destination prediction by trajectory distribution-based model. IEEE Trans. Intell. Transp. Syst. 19(8), 2470–2481 (2018)

    Article  Google Scholar 

  8. Can, Y., Győző, G.: Fast map matching, an algorithm integrating hidden Markov model with precomputation. Int. J. Geogr. Inf. Sci. 32(3), 547–570 (2018)

    Article  Google Scholar 

  9. Xue, A.Y., Zhang, R., Zheng, Y., Xie, X.: Destination prediction by sub-trajectory synthesis and privacy protection against such prediction. ICDE, pp. 254–265 (2012)

    Google Scholar 

  10. Li, X., Li, M., Gong, Y.J.: T-DesP: destination pre-diction based on big trajectory data. IEEE Trans. Intell. Transp. Syst. 17(8), 2344–2354 (2016)

    Article  Google Scholar 

  11. Mathew, W., Raposo, R., Martins, B.: Predicting future locations with hidden Markov models. In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, pp. 911–918 (2012)

    Google Scholar 

  12. Alvarez-Garcia, J.A., et al.: Trip destination prediction based on past GPS log using a Hidden Markov Model. Expert Syst. Appl. 37(12), 8166–8171 (2010)

    Google Scholar 

  13. Ebel, P., IE Göl., Lingenfelder, C.: Destination prediction based on partial trajectory data. IEEE Intelligent Vehicles Symposium, pp.1149−1155 (2020)

    Google Scholar 

  14. Liao, C., Chen, C., Xiang, C.: Taxi-passenger’s destination prediction via GPS embedding and attention-based BiLSTM Model. IEEE Trans. Intell. Transp. Syst. 1, 1–14 (2021)

    Google Scholar 

  15. Yuki, E., Hiroyuki, T., Kyosuke, N., Akihisa K.: Deep feature extraction from trajectories for transportation mode estimation. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 54–66 (2016)

    Google Scholar 

  16. Zhang, X., Zhao, Z., Zheng, Y.: Prediction of taxi destinations using a novel data embedding method and ensemble learning. IEEE Trans. Intell. Transp. Syst. 21(1), 68–78 (2019)

    Article  Google Scholar 

  17. Yang, Z., et al.: An efficient destination prediction approach based on future trajectory prediction and transition matrix optimization. IEEE Trans. Knowl. Data Eng. 32(2), 203−217 (2020)

    Google Scholar 

  18. Ryo, I., Kota, T., Tatsuya, K., Masamichi, S.: Early destination prediction with spatio-temporal user behavior patterns. Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 1(4), 1–19 (2018)

    Google Scholar 

  19. Schlichtkrull, M., Kipf, T.N., Bloem, P.: Modeling relational data with graph convolutional networks, In: 15th ESWC (2018)

    Google Scholar 

  20. Cho, K., Van Merrienboer, B., Bahdanau, D.: On the properties of neural machine translation: Encoder-decoder approaches. arXiv:1409.1259. https://arxiv.org/abs/1409.1259 (2014)

  21. Rossi, A., Barlacchi, G., Bianchini, M., Lepri, B.: Modelling taxi drivers’ behaviour for the next destination prediction. IEEE Trans. Intel. Transp.Syst. 21(7), 2980–2989 (2019)

    Google Scholar 

  22. Endo, Y., Toda, H., Nishida, K.: Classifying spatial trajectories using representation learning. Int. J. Data Sci. Analytics. 2(3–4), 107–117 (2016). https://doi.org/10.1007/s41060-016-0014-1

    Article  Google Scholar 

  23. Zhao, J., et al.: On prediction of user destination by sub-trajectory understanding: a deep learning based approach. In: ACM International Conference on Information and Knowledge Management, pp. 1413–1422 (2018)

    Google Scholar 

  24. Xu, J., et al.: Predicting destinations by a deep learning based approach. IEEE Trans. Knowl. Data Eng. 33(2), 651−661 (2019)

    Google Scholar 

  25. Paul, N., John, K.: Hidden Markov map matching through noise and sparseness. In: ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 336–343 (2009)

    Google Scholar 

  26. https://sigspatial2021.sigspatial.org/, https://sigspatial2021.sigspatial.org/sigspatial-cup/. Accessed 11 Nov 2022

Download references

Acknowledgements

This work was partially supported by the grant from the Natural Science Foundation of Hebei Province (F2021210005), the Outstanding Youth Foundation of Hebei Education Department (BJ2021085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhai Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, X., Jiang, M., Wang, S., Li, N., Sun, J., Wang, Z. (2024). TOP: Taxi Destination Prediction Based on Trajectory Knowledge Graph. In: Zhang, W., Tung, A., Zheng, Z., Yang, Z., Wang, X., Guo, H. (eds) Web and Big Data. APWeb-WAIM 2024. Lecture Notes in Computer Science, vol 14962. Springer, Singapore. https://doi.org/10.1007/978-981-97-7235-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-7235-3_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-7234-6

  • Online ISBN: 978-981-97-7235-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics