Parallel Processing of Temporal Anti-Joins in Memory | SpringerLink
Skip to main content

Parallel Processing of Temporal Anti-Joins in Memory

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2024)

Abstract

Efficient and scalable processing of temporal anti-joins remains a significant research challenge in temporal databases. To address this issue, this paper introduces a novel temporal primitive designed for transforming a temporal anti-join, including conjunctive equality predicates on non-temporal attributes, into an equivalent algebraic expression involving a temporal inner join. The rationale behind this transformation is that the new expression can be decomposed into subtasks, allowing for parallel execution across multiple CPUs. Experimental results using real-world datasets demonstrate the superior efficiency and scalability of our solution for in-memory processing compared to existing solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/pbour/ijoin.

  2. 2.

    https://github.com/GiannisReppas/temporal_joins.

  3. 3.

    https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

  4. 4.

    https://data.cityofchicago.org/Transportation/Dig-Ticket-Notifications/cygx-ui4j.

  5. 5.

    https://data.cityofchicago.org/Transportation/Divvy-Trips/fg6s-gzvg.

  6. 6.

    https://data.cityofnewyork.us/browse?category=Health.

References

  1. Arge, L., Procopiuc, O., Ramaswamy, S., Suel, T., Vitter, J.S.: Scalable sweeping-based spatial join. In: VLDB. p. 570-581. Morgan Kaufmann (1998)

    Google Scholar 

  2. Becker, B., Gschwind, S., Ohler, T., Seeger, B., Widmayer, P.: An asymptotically optimal multiversion b-tree. VLDB J. 5, 264–275 (1996)

    Article  Google Scholar 

  3. Blanas, S., Li, Y., Patel, J.M.: Design and evaluation of main memory hash join algorithms for multi-core cpus. In: SIGMOD, pp. 37–48. ACM (2011)

    Google Scholar 

  4. Böhlen, M.H., Dignös, A., Gamper, J., Jensen, C.S.: Temporal data management - an overview. In: eBISS. LNBIP, vol. 324, pp. 51–83. Springer (2017)

    Google Scholar 

  5. Böhlen, M.H., Dignös, A., Gamper, J., Jensen, C.S.: Database technology for processing temporal data (invited paper). In: TIME. LIPIcs, vol. 120, pp. 2:1–2:7. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

    Google Scholar 

  6. Bouros, P., Lampropoulos, K., Tsitsigkos, D., Mamoulis, N., Terrovitis, M.: Band joins for interval data. In: EDBT, pp. 443–446 (2020)

    Google Scholar 

  7. Bouros, P., Mamoulis, N.: A forward scan based plane sweep algorithm for parallel interval joins. In: VLDB, pp. 1346–1357. ACM (2017)

    Google Scholar 

  8. Bouros, P., Mamoulis, N., Tsitsigkos, D., Terrovitis, M.: In-memory interval joins. VLDB J. 30, 667–691 (2021)

    Article  Google Scholar 

  9. Cafagna, F., Böhlen, M.H.: Disjoint interval partitioning. VLDB J. 26, 447–466 (2017)

    Article  Google Scholar 

  10. Christodoulou, G., Bouros, P., Mamoulis, N.: Hint: A hierarchical index for intervals in main memory. In: SIGMOD, pp. 1257–1270. ACM (2022)

    Google Scholar 

  11. Christodoulou, G., Bouros, P., Mamoulis, N.: Hint: a hierarchical interval index for allen relationships. The VLDB Journal (2023)

    Google Scholar 

  12. Dignös, A., Böhlen, M.H., Gamper, J.: Temporal alignment. In: SIGMOD, pp. 433–444. ACM (2012)

    Google Scholar 

  13. Dignös, A., Böhlen, M.H., Gamper, J.: Query time scaling of attribute values in interval timestamped databases. In: ICDE, pp. 1304–1307 (2013)

    Google Scholar 

  14. Dignös, A., Böhlen, M.H., Gamper, J.: Overlap interval partition join. In: SIGMOD. pp. 1459–1470. ACM (2014)

    Google Scholar 

  15. Dignös, A., Böhlen, M.H., Gamper, J., Jensen, C.S.: Extending the kernel of a relational dbms with comprehensive support for sequenced temporal queries. ACM Trans. Database Syst. 41(4), 26:1–26:46 (2016)

    Google Scholar 

  16. Dignös, A., Böhlen, M.H., Gamper, J., Jensen, C.S., Moser, P.: Leveraging range joins for the computation of overlap joins. VLDB J. 31(1), 75–99 (2022)

    Article  Google Scholar 

  17. Dignös, A., Glavic, B., Niu, X., Gamper, J., Böhlen, M.H.: Snapshot semantics for temporal multiset relations. Proc. VLDB Endow. 12(6), 639–652 (2019)

    Article  Google Scholar 

  18. Enderle, J., Hampel, M., Seidl, T.: Joining interval data in relational databases. In: SIGMOD Conference, pp. 683–694. ACM (2004)

    Google Scholar 

  19. Gao, D., Jensen, C.S., Snodgrass, R.T., Soo, M.D.: Join operations in temporal databases. VLDB J. 14, 2–29 (2005)

    Article  Google Scholar 

  20. Gunadhi, H., Segev, A.: Query processing algorithms for temporal intersection joins. In: ICDE, pp. 336–344. IEEE Computer Society (1991)

    Google Scholar 

  21. Hu, X., Sintos, S., Gao, J., Agarwal, P.K., Yang, J.: Computing complex temporal join queries efficiently. In: SIGMOD, pp. 2076–2090. ACM (2022)

    Google Scholar 

  22. Jensen, C.S.: Jensen: temporal data management. IEEE Trans. Knowl. Data Eng. 11(1), 36–44 (1999)

    Article  Google Scholar 

  23. Kaufmann, M., et al.: Timeline index: a unified data structure for processing queries on temporal data in SAP HANA. In: SIGMOD, pp. 1173–1184. ACM (2013)

    Google Scholar 

  24. Kriegel, H., Pötke, M., Seidl, T.: Managing intervals efficiently in object-relational databases. In: VLDB, pp. 407–418. Morgan Kaufmann (2000)

    Google Scholar 

  25. Kulkarni, K.G., Michels, J.: Temporal features in SQL: 2011. SIGMOD Rec. 41(3), 34–43 (2012)

    Article  Google Scholar 

  26. Leung, T.C., Muntz, R.R.: Temporal query processing and optimization in multiprocessor database machines. In: VLDB, pp. 383–394. Morgan Kaufmann (1992)

    Google Scholar 

  27. Mirabi, M., Fathi, L., Dignös, A., Gamper, J., Binnig, C.: A new primitive for processing temporal joins. In: SSTD’23, pp. 106–109. ACM (2023)

    Google Scholar 

  28. Pfoser, D., Jensen, C.S.: Incremental join of time-oriented data. In: SSDBM, pp. 232–243. Computer Society (1999)

    Google Scholar 

  29. Piatov, D., Helmer, S., Dignös, A.: An interval join optimized for modern hardware. In: ICDE, pp. 1098–1109. IEEE Computer Society (2016)

    Google Scholar 

  30. Piatov, D., Helmer, S., Dignös, A., Persia, F.: Cache-efficient sweeping-based interval joins for extended allen relation predicates. VLDB J. 30(3), 379–402 (2021)

    Article  Google Scholar 

  31. Raigoza, J., Sun, J.: Temporal join processing with hilbert curve space mapping. In: SAC, pp. 839–844. ACM (2014)

    Google Scholar 

  32. Segev, A., Gunadhi, H.: Event-join optimization in temporal relational databases. In: VLDB, pp. 205–215. Morgan Kaufmann (1989)

    Google Scholar 

  33. Soo, M.D., Snodgrass, R.T., Jensen, C.S.: Efficient evaluation of the valid-time natural join. In: ICDE, pp. 282–292. IEEE Computer Society (1994)

    Google Scholar 

  34. Zhang, D., Tsotras, V.J., Seeger, B.: Efficient temporal join processing using indices. In: ICDE, pp. 103–113. IEEE Computer Society (2002)

    Google Scholar 

Download references

Acknowledgment

This work was partially supported by hessian. AI at TU Darmstadt and DFKI Darmstadt as well as by a grant from the Autonomous Province of Bozen-Bolzano “Research Südtirol/Alto Adige 2019” (project ISTeP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meghdad Mirabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reppas, I., Mirabi, M., Fathi, L., Binnig, C., Dignös, A., Gamper, J. (2024). Parallel Processing of Temporal Anti-Joins in Memory. In: Onizuka, M., et al. Database Systems for Advanced Applications. DASFAA 2024. Lecture Notes in Computer Science, vol 14850. Springer, Singapore. https://doi.org/10.1007/978-981-97-5552-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5552-3_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5551-6

  • Online ISBN: 978-981-97-5552-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics