Dendritic SE-ResNet Learning for Bioinformatic Classification | SpringerLink
Skip to main content

Dendritic SE-ResNet Learning for Bioinformatic Classification

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 14954))

Included in the following conference series:

  • 549 Accesses

Abstract

The construction of neural networks is a widely adopted approach in deep learning for tackling classification problems, aiming to emulate the functionality of human neurons. However, many existing models that simulate neuron structures do not fully consider the non-linear relationships between dendrites and axons during signal transmission. To overcome this limitation, we introduce a novel deep learning model named dendritic SE-ResNet (DEN). This model simulates the construction of nonlinear signaling between dendrites and axons by combining biological attention mechanisms and the biologically interpretable neuron. In comparison to the original network, the proposed DEN exhibits a greater biological resemblance to the functioning of neurons. Experimental results further demonstrate that DEN outperforms some state-of-the-art deep neural network models in classification tasks. Compared to those models, our model attains a classification accuracy of 91.6%, marking an advancement of 2.7% over SE-ResNet. Additionally, our model demonstrates an F1-score of 92.4%, exhibiting an improvement of 4.4% compared to SE-ResNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Larkum, M.E.: Are dendrites conceptually useful? Neuroscience 489, 4–14 (2022)

    Article  Google Scholar 

  2. Boudardara, F., Boussif, A., Meyer, P.J., Ghazel, M.: A review of abstraction methods towards verifying neural networks. ACM Trans. Embedded Comput. Syst. (2023)

    Google Scholar 

  3. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

    Article  MathSciNet  Google Scholar 

  4. Segev, I.: Single neurone models: oversimple, complex and reduced. Trends Neurosci. 15(11), 414–421 (1992)

    Article  Google Scholar 

  5. Yang, J., Wang, K., Wang, Y., Wang, J., Lei, Z., Gao, S.: Dynamic population structures-based differential evolution algorithm. IEEE Trans. Emerging Top. Comput. Intell., 1–13 (2024)

    Google Scholar 

  6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 25, pp. 1097–1105 (2012)

    Google Scholar 

  7. van de Ven, G.M., Siegelmann, H.T., Tolias, A.S.: Brain-inspired replay for continual learning with artificial neural networks. Nat. Commun. 11(1), 4069 (2020)

    Article  Google Scholar 

  8. Zamora, E., Sossa, H.: Dendrite morphological neurons trained by stochastic gradient descent. Neurocomputing 260, 420–431 (2017)

    Article  Google Scholar 

  9. Radenovic, F., Dubey, A., Mahajan, D.: Neural basis models for interpretability. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 35, pp. 8414–8426 (2022)

    Google Scholar 

  10. Fan, F.L., Xiong, J., Li, M., Wang, G.: On interpretability of artificial neural networks: a survey. IEEE Trans. Radiat. Plasma Med. Sci. 5(6), 741–760 (2021)

    Article  Google Scholar 

  11. Gao, S., Zhou, M., Wang, Y., Cheng, J., Yachi, H., Wang, J.: Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction. IEEE Trans. Neural Netw. Learn. Syst. 30(2), 601–614 (2019)

    Article  Google Scholar 

  12. Liu, Z., Zhang, Z., Lei, Z., Omura, M., Wang, R.L., Gao, S.: Dendritic deep learning for medical segmentation. IEEE/CAA J. Automatica Sinica 11(3), 803–805 (2024)

    Article  Google Scholar 

  13. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7132–7141 (2018)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  15. Wu, Z., Shen, C., van den Hengel, A.: Wider or deeper: revisiting the ResNet model for visual recognition. Pattern Recogn. 90, 119–133 (2019)

    Article  Google Scholar 

  16. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 29, pp. 379–387 (2016)

    Google Scholar 

  17. Chen, J., et al.: An efficient memristor-based circuit implementation of squeeze-and-excitation fully convolutional neural networks. IEEE Trans. Neural Netw. Learn. Syst. 33(4), 1779–1790 (2021)

    Article  Google Scholar 

  18. Vega, R., Sanchez-Ante, G., Falcon-Morales, L.E., Sossa, H., Guevara, E.: Retinal vessel extraction using lattice neural networks with dendritic processing. Comput. Biol. Med. 58, 20–30 (2015)

    Article  Google Scholar 

  19. Jones, I.S., Kording, K.P.: Might a single neuron solve interesting machine learning problems through successive computations on its dendritic tree? Neural Comput. 33(6), 1554–1571 (2021)

    Article  MathSciNet  Google Scholar 

  20. Zhang, Z., Lei, Z., Omura, M., Hasegawa, H., Gao, S.: Dendritic learning-incorporated vision transformer for image recognition. IEEE/CAA J. Automatica Sinica 11(2), 539–541 (2024)

    Article  Google Scholar 

  21. Gao, S., et al.: Fully complex-valued dendritic neuron model. IEEE Trans. Neural Netw. Learn. Syst. 34(4), 2105–2118 (2023)

    Article  Google Scholar 

  22. Xu, J., Sun, X., Zhang, Z., Zhao, G., Lin, J.: Understanding and improving layer normalization. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 32, pp. 4381–4391 (2019)

    Google Scholar 

  23. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS), vol. 15, pp. 315–323 (2011)

    Google Scholar 

  24. Luque, A., Carrasco, A., Martín, A., de las Heras, A.: The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recogn. 91, 216–231 (2019)

    Google Scholar 

  25. De Diego, I.M., Redondo, A.R., Fernández, R.R., Navarro, J., Moguerza, J.M.: General performance score for classification problems. Appl. Intell. 52(10), 12049–12063 (2022)

    Article  Google Scholar 

  26. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4700–4708 (2017)

    Google Scholar 

  27. Xie, S., Girshick, R., Dollar, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1492–1500 (2017)

    Google Scholar 

  28. Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: RepVGG: making VGG-style convnets great again. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13733–13742, June 2021

    Google Scholar 

  29. Vasu, P.K.A., Gabriel, J., Zhu, J., Tuzel, O., Ranjan, A.: FastViT: a fast hybrid vision transformer using structural reparameterization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5785–5795, October 2023

    Google Scholar 

  30. Abbasi, A.F., Asim, M.N., Trygg, J., Dengel, A., Ahmed, S.: Deep learning architectures for the prediction of YY1-mediated chromatin loops. In: International Symposium on Bioinformatics Research and Applications (ISBRA), vol. 14248, pp. 72–84 (2023)

    Google Scholar 

  31. Yang, L., Shami, A.: On hyperparameter optimization of machine learning algorithms: theory and practice. Neurocomputing 415, 295–316 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Japan Society for Japan Science and Technology Agency (JST) Support for Pioneering Research Initiated by the Next Generation (SPRING) under Grant JPMJSP2145, and JST through the Establishment of University Fellowships towards the Creation of Science Technology Innovation under Grant JPMJFS2115.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Ou or Shangce Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ou, Y., Song, Y., Liu, Z., Zhang, Z., Tang, J., Gao, S. (2024). Dendritic SE-ResNet Learning for Bioinformatic Classification. In: Peng, W., Cai, Z., Skums, P. (eds) Bioinformatics Research and Applications. ISBRA 2024. Lecture Notes in Computer Science(), vol 14954. Springer, Singapore. https://doi.org/10.1007/978-981-97-5128-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5128-0_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5127-3

  • Online ISBN: 978-981-97-5128-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics