Abstract
Structured grid layouts are preferable in many scenarios of 2D visual content creation since their structures facilitate further layout editing. Multiple geometry-based methods can effectively create structured grid layouts but require user-provided constraints or rules. Existing data-driven approaches have achieved remarkable performance on layout generation, but fail to produce appropriate layout structures. We present GTLayout, a novel generative model for structured grid layout generation. We adopt general trees to represent structured grid layouts and exploit a recursive neural network (RvNN) for this generation task. Our model can handle grid layouts with varied structures and regular arrangements. Qualitative and quantitative experiments on public grid layout datasets show that our method outperforms several baselines in the tasks of layout reconstruction and layout generation, especially when the datasets contain a small number of samples. We also demonstrate that the structured layout space constructed by our method enables structure blending between structured layouts. We will release our code upon the acceptance of the paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arroyo, D.M., Postels, J., Tombari, F.: Variational transformer networks for layout generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13642–13652 (2021)
Baudisch, P., Cutrell, E., Hinckley, K., Eversole, A.: Snap-and-go: helping users align objects without the modality of traditional snapping. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 301–310 (2005)
Bier, E.A., Stone, M.C.: Snap-dragging. ACM SIGGRAPH. Comput. Graph. 20(4), 233–240 (1986)
Chai, S., Zhuang, L., Yan, F.: Layoutdm: transformer-based diffusion model for layout generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18349–18358 (2023)
Dayama, N.R., Todi, K., Saarelainen, T., Oulasvirta, A.: Grids: interactive layout design with integer programming. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–13 (2020)
Deka, B., et al.: Rico: a mobile app dataset for building data-driven design applications. In: Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, pp. 845–854 (2017)
Dixon, M., Leventhal, D., Fogarty, J.: Content and hierarchy in pixel-based methods for reverse engineering interface structure. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 969–978 (2011)
Frisch, M., Kleinau, S., Langner, R., Dachselt, R.: Grids & guides: multi-touch layout and alignment tools. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1615–1618 (2011)
Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc. (2014). https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
Gupta, K., Lazarow, J., Achille, A., Davis, L.S., Mahadevan, V., Shrivastava, A.: Layouttransformer: layout generation and completion with self-attention. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1004–1014 (2021)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)
Hui, M., Zhang, Z., Zhang, X., Xie, W., Wang, Y., Lu, Y.: Unifying layout generation with a decoupled diffusion model. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1942–1951 (2023)
Inoue, N., Kikuchi, K., Simo-Serra, E., Otani, M., Yamaguchi, K.: LayoutDM: discrete diffusion model for controllable layout generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10167–10176 (2023)
Jiang, Y., Du, R., Lutteroth, C., Stuerzlinger, W.: Orc layout: adaptive GUI layout with or-constraints. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2019)
Jiang, Y., Stuerzlinger, W., Lutteroth, C.: Reverseorc: reverse engineering of resizable user interface layouts with or-constraints. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pp. 1–18 (2021)
Jiang, Z., et al.: Layoutformer++: conditional graphic layout generation via constraint serialization and decoding space restriction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18403–18412 (2023)
Jiang, Z., Sun, S., Zhu, J., Lou, J.G., Zhang, D.: Coarse-to-fine generative modeling for graphic layouts. In: AAAI 2022 (2022)
Jyothi, A.A., Durand, T., He, J., Sigal, L., Mori, G.: Layoutvae: stochastic scene layout generation from a label set. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9895–9904 (2019)
Kenton, J.D.M.W.C., Toutanova, L.K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT, pp. 4171–4186 (2019)
Kikuchi, K., Otani, M., Yamaguchi, K., Simo-Serra, E.: Modeling visual containment for web page layout optimization. In: Computer Graphics Forum, vol. 40, pp. 33–44. Wiley Online Library (2021)
Kikuchi, K., Simo-Serra, E., Otani, M., Yamaguchi, K.: Constrained graphic layout generation via latent optimization. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 88–96 (2021)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, 7–9 May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1412.6980
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: International Conference on Learning Representations (2013)
Kong, X., et al.: BLT: bidirectional layout transformer for controllable layout generation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, 23–27 October 2022, Proceedings, Part XVII, pp. 474–490. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19790-1_29
Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Quart. 2(1–2), 83–97 (1955)
Lee, H.-Y., et al.: Neural design network: graphic layout generation with constraints. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) Computer Vision – ECCV 2020: 16th European Conference, Glasgow, 23–28 August 2020, Proceedings, Part III, pp. 491–506. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_29
Li, J., Yang, J., Hertzmann, A., Zhang, J., Xu, T.: Layoutgan: generating graphic layouts with wireframe discriminators. arXiv preprint arXiv:1901.06767 (2019)
Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H., Guibas, L.: Grass: generative recursive autoencoders for shape structures. ACM Trans. Graph. 36(4), 1–14 (2017)
Li, M., et al.: Grains: generative recursive autoencoders for indoor scenes. ACM Trans. Graph. 38(2), 1–16 (2019)
Lupton, E.: Thinking with Type: A Critical Guide for Designers, Writers, Editors, & Students. Chronicle Books (2014)
Manandhar, D., Ruta, D., Collomosse, J.: Learning structural similarity of user interface layouts using graph networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) Computer Vision – ECCV 2020: 16th European Conference, Glasgow, 23–28 August 2020, Proceedings, Part XXII, pp. 730–746. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_44
Mo, K., et al.: Structurenet: hierarchical graph networks for 3d shape generation. arXiv preprint arXiv:1908.00575 (2019)
Müller-Brockmann, J.: Grid systems in graphic design: a visual communication manual for graphic designers, typographers and three dimensional designers. Arthur Niggli (1996)
O’Donovan, P., Agarwala, A., Hertzmann, A.: Learning layouts for single-page graphic designs. IEEE Trans. Visual Comput. Graph. 20(8), 1200–1213 (2014)
Patil, A.G., Ben-Eliezer, O., Perel, O., Averbuch-Elor, H.: Read: recursive autoencoders for document layout generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 544–545 (2020)
Patil, A.G., Li, M., Fisher, M., Savva, M., Zhang, H.: Layoutgmn: neural graph matching for structural layout similarity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11048–11057 (2021)
Raisamo, R., Räihä, K.J.: A new direct manipulation technique for aligning objects in drawing programs. In: Proceedings of the 9th Annual ACM Symposium on User Interface Software and Technology, pp. 157–164 (1996)
Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2008)
Socher, R., Lin, C.C., Manning, C., Ng, A.Y.: Parsing natural scenes and natural language with recursive neural networks. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 129–136 (2011)
Swearngin, A., Wang, C., Oleson, A., Fogarty, J., Ko, A.J.: Scout: rapid exploration of interface layout alternatives through high-level design constraints. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–13 (2020)
Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
Xu, P., Fu, H., Tai, C.L., Igarashi, T.: GACA: group-aware command-based arrangement of graphic elements. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 2787–2795 (2015)
Xu, P., Li, Y., Yang, Z., Shi, W., Fu, H., Huang, H.: Hierarchical layout blending with recursive optimal correspondence. ACM Trans. Graph. (Proc. SIGGRAPH ASIA) 41(6), 249:1–249:15 (2022)
Xu, P., Yan, G., Fu, H., Igarashi, T., Tai, C.L., Huang, H.: Global beautification of 2d and 3d layouts with interactive ambiguity resolution. IEEE Trans. Visual Comput. Graph. 27(4), 2355–2368 (2019)
Yamaguchi, K.: Canvasvae: learning to generate vector graphic documents. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5481–5489 (2021)
Yang, Y.L., Wang, J., Vouga, E., Wonka, P.: Urban pattern: layout design by hierarchical domain splitting. ACM Trans. Graph. 32(6), 1–12 (2013)
Zeidler, C., Lutteroth, C., Sturzlinger, W., Weber, G.: The Auckland layout editor: an improved GUI layout specification process. In: Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, pp. 343–352 (2013)
Zheng, X., Qiao, X., Cao, Y., Lau, R.W.: Content-aware generative modeling of graphic design layouts. ACM Trans. Graph. 38(4), 1–15 (2019)
Zhong, X., Tang, J., Yepes, A.J.: Publaynet: largest dataset ever for document layout analysis. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1015–1022. IEEE (2019)
Zhu, C., Xu, K., Chaudhuri, S., Yi, R., Zhang, H.: Scores: shape composition with recursive substructure priors. ACM Trans. Graph. 37(6), 1–14 (2018)
Acknowledgments
This work was supported in parts by NSFC (62072316, U21B2023), NSF of Guangdong Province (2023A1515011297), DEGP Innovation Team (2022KCXTD025), Shenzhen Science and Technology Program (KQTD20210811090044003), and Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ).
Disclosure of Interests. The authors have no competing interests to declare that are relevant to the content of this article.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Xu, P., Shi, W., Hu, X., Fu, H., Huang, H. (2024). GTLayout: Learning General Trees for Structured Grid Layout Generation. In: Zhang, FL., Sharf, A. (eds) Computational Visual Media. CVM 2024. Lecture Notes in Computer Science, vol 14593. Springer, Singapore. https://doi.org/10.1007/978-981-97-2092-7_7
Download citation
DOI: https://doi.org/10.1007/978-981-97-2092-7_7
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-2091-0
Online ISBN: 978-981-97-2092-7
eBook Packages: Computer ScienceComputer Science (R0)