Abstract
Quantum computers promise polynomial or exponential speed-up in solving certain problems compared to classical computers. However, in practical use, there are currently a number of fundamental technical challenges. One of them concerns the loading of data into quantum computers, since they cannot access common databases. In this vision paper, we develop a hybrid data management architecture in which databases can serve as data sources for quantum algorithms. To test the architecture, we perform experiments in which we assign data points stored in a database to clusters. For cluster assignment, a quantum algorithm processes this data by determining the distances between data points and cluster centroids.
This work has been funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) grant #385808805. We would like to thank Stefanie Scherzinger from University of Passau for many prolific discussions as well as helpful suggestions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
IBM Quantum. https://quantum.ibm.com/, 2023.
References
Çalikyilmaz, U., et al.: Opportunities for quantum acceleration of databases: optimization of queries and transaction schedules. Proc. VLDB Endow. 16(9), 2344–2353 (2023)
David, C.: Complexity of data tree patterns over XML documents. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 278–289. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85238-4_22
DiAdamo, S., O’Meara, C., Cortiana, G., Bernabé-Moreno, J.: Practical quantum K-means clustering: performance analysis and applications in energy grid classification. IEEE Trans. Quant. Eng. 3, 1–16 (2022)
Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. In: Mazzara, M., Meyer, B. (eds.) Present and Ulterior Software Engineering, pp. 195–216. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67425-4_12
Gottlob, G., Koch, C., Pichler, R.: The complexity of XPath query evaluation. In: Proceedings of the PODS 2003, pp. 179–190. ACM (2003)
Hassija, V., Chamola, V., Goyal, A., Kanhere, S.S., Guizani, N.: Forthcoming applications of quantum computing: peeking into the future. IET Quant. Commun. 1(2), 35–41 (2020)
Herbert, S.: Quantum computing for data-centric engineering and science. Data-Cent. Eng. 3, e36 (2022)
Houssein, E.H., Abohashima, Z., Elhoseny, M., Mohamed, W.M.: Machine learning in the quantum realm: the state-of-the-art, challenges, and future vision. Expert Syst. Appl. 194, 116512 (2022)
Jóczik, S., Kiss, A.: Quantum computation and its effects in database systems. In: Darmont, J., Novikov, B., Wrembel, R. (eds.) ADBIS 2020. CCIS, vol. 1259, pp. 13–23. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54623-6_2
Kieferová, M., Sanders, Y.: Assume a quantum data set. Harv. Data Sci. Rev. 4(1) (2022)
Kraska, T., et al.: Check out the big brain on BRAD: simplifying cloud data processing with learned automated data meshes. Proc. VLDB Endow. 16(11), 3293–3301 (2023)
Leymann, F., Barzen, J.: The bitter truth about gate-based quantum algorithms in the NISQ era. Quant. Sci. Technol. 5(4), 044007 (2020)
Liu, J., Hann, C.T., Jiang, L.: Data centers with quantum random access memory and quantum networks. Phys. Rev. A 108, 032610 (2023)
Manolescu, I., Mohanty, M.: Full-power graph querying: state of the art and challenges. Proc. VLDB Endow. 16(12), 3886–3889 (2023)
Matteo, O.D., Gheorghiu, V., Mosca, M.: Fault-tolerant resource estimation of quantum random-access memories. IEEE Trans. Quant. Eng. 1, 1–13 (2020)
Ouedrhiri, O., Banouar, O., Raghay, S., el Hadaj, S.: Comparative study of data preparation methods in quantum clustering algorithms. In: NISS (ACM), pp. 28:1–28:5. ACM (2021)
Phalak, K., Chatterjee, A., Ghosh, S.: Quantum random access memory for dummies. CoRR abs/2305.01178 (2023)
Qiskit contributors: Qiskit: An Open-source Framework for Quantum Computing (2023). https://doi.org/10.5281/zenodo.2573505
Riel, H.: Quantum computing technology. In: 2021 IEEE International Electron Devices Meeting (IEDM) (2021)
Schuld, M., Petruccione, F.: Quantum computing. In: Schuld, M., Petruccione, F. (eds.) Machine Learning with Quantum Computers. Quantum Science and Technology, pp. 79–146. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-83098-4_3
Schuld, M., Petruccione, F.: Representing data on a quantum computer. In: Schuld, M., Petruccione, F. (eds.) Machine Learning with Quantum Computers. QST, pp. 147–176. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-83098-4_4
Weder, B., Barzen, J., Leymann, F., Zimmermann, M.: Hybrid quantum applications need two orchestrations in superposition: a software architecture perspective. In: 2021 IEEE International Conference on Web Services (ICWS), pp. 1–13 (2021)
Weigold, M., Barzen, J., Leymann, F., Salm, M.: Encoding patterns for quantum algorithms. IET Quant. Commun. 2(4), 141–152 (2021)
Weigold, M., Barzen, J., Leymann, F., Salm, M.: Expanding data encoding patterns for quantum algorithms. In: 2021 IEEE 18th International Conference on Software Architecture Companion (ICSA-C), pp. 95–101. IEEE (2021–03)
Weigold, M., Barzen, J., Leymann, F., Salm, M.: Data encoding patterns for quantum computing. In: Proceedings of the 27th Conference on Pattern Languages of Programs, PLoP 2020. The Hillside Group (2022)
Weigold, M., Barzen, J., Leymann, F., Vietz, D.: Patterns for hybrid quantum algorithms. In: Barzen, J. (ed.) SummerSOC 2021. CCIS, vol. 1429, pp. 34–51. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87568-8_2
Yuan, G., et al.: Quantum computing for databases: a short survey and vision. In: VLDB Workshops. CEUR Workshop Proceedings, vol. 3462. CEUR-WS.org (2023)
Zajac, M.: Encoding and provisioning data in different data models for quantum computing. In: PhD@VLDB. CEUR Workshop Proceedings, vol. 3452, pp. 45–48. CEUR-WS.org (2023)
Zajac, M., Störl, U.: Towards quantum-based search for industrial data-driven services. In: Proceedings of the 2022 IEEE International Conference on Quantum Software (QSW). IEEE (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zajac, M., Störl, U. (2024). Hybrid Data Management Architecture for Present Quantum Computing. In: Monti, F., et al. Service-Oriented Computing – ICSOC 2023 Workshops. ICSOC 2023. Lecture Notes in Computer Science, vol 14518. Springer, Singapore. https://doi.org/10.1007/978-981-97-0989-2_14
Download citation
DOI: https://doi.org/10.1007/978-981-97-0989-2_14
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-0988-5
Online ISBN: 978-981-97-0989-2
eBook Packages: Computer ScienceComputer Science (R0)