Popularity Cuckoo Filter: Always Keeping Popular Items in Mind | SpringerLink
Skip to main content

Popularity Cuckoo Filter: Always Keeping Popular Items in Mind

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2023)

Abstract

A Bloom Filter is a basic and randomized means of storing information that can accurately determine membership status queries with no false negatives and a small probability of false positives. As its improvement, a Cuckoo Filter is a kind of new data structure which can support adding, removing items dynamically and achieving higher performance than a Bloom Filter. But current Cuckoo filters usually handle items assuming they have the same possibility to be queried, and treat them without difference, which is unable to satisfy the demand for querying that most popular items in dataset, such as in web caching.

We propose a new data structure called the popularity cuckoo filter that can make false positive smaller and prioritize storing members with higher popularity. Popularity cuckoo filters use different numbers of hash functions for items with different popularities, so they have better space efficiencies. Our experimental results show that the popularity cuckoo filter can distinguish items with large or small popularities well and suit datasets with irregular query patterns and non-uniform membership likelihood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13, 422–426 (1970). https://doi.org/10.1145/362686.362692

    Article  Google Scholar 

  2. Cohen, S., Matias, Y.: Spectral bloom filters. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data (SIGMOD 2003). New York (2003). https://doi.org/10.1145/872757.872787

  3. Chazelle, B., Kilian, J., Rubinfeld, R., Tal, A.: The Bloomier filter: an efficient data structure for static support lookup tables. In: ACM-SIAM Symposium on Discrete Algorithms (2004)

    Google Scholar 

  4. Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary cache: a scalable wide-area Web cache sharing protocol. IEEE/ACM Trans. Netw. 8, 281–293 (2000). https://doi.org/10.1109/90.851975

    Article  Google Scholar 

  5. Kumar, A., Xu, J., Zegara, E.W.: Efficient and scalable query routing for unstructured peer-to-peer networks. In: Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies (2005). https://doi.org/10.1109/infcom.2005.1498343

  6. Mitzenmacher, M.: Compressed bloom filters. In: Proceedings of the Twentieth Annual ACM Symposium on Principles of Distributed Computing (PODC 2001), New York (2001). https://doi.org/10.1145/383962.384004

  7. Rhea, S.C., Kubiatowicz, J.: Probabilistic location and routing. In: Proceedings of the Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies (2002). https://doi.org/10.1109/infcom.2002.1019375

  8. Bruck, J., Jie, G., Anxiao, J.: Weighted bloom filter. In: 2006 IEEE International Symposium on Information Theory. IEEE (2006)

    Google Scholar 

  9. Ye, F., Luo, H., Lu, S., Zhang, L.: Statistical en-route filtering of injected false data in sensor networks. IEEE J. Select. Areas Commun. 23, 839–850 (2005). https://doi.org/10.1109/jsac.2005.843561

    Article  Google Scholar 

  10. Bonomi, F., Mitzenmacher, M., Panigrahy, R., Singh, S., Varghese, G.: Presented at the An Improved Construction for Counting Bloom Filters (2006). https://doi.org/10.1007/11841036_61

  11. Bender, M.A., et al.: Don’t thrash. Proc. VLDB Endow 5, 1627–1637 (2012). https://doi.org/10.14778/2350229.2350275

  12. Kleyko, D., Rahimi, A., Gayler, R.W., Osipov, E.: Autoscaling Bloom filter: controlling trade-off between true and false positives. Neural Comput. Appl. 32, 3675–3684 (2019). https://doi.org/10.1007/s00521-019-04397-1

    Article  Google Scholar 

  13. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter. In: Proceedings of the 10th ACM International on Conference on emerging Networking Experiments and Technologies, New York (2014). https://doi.org/10.1145/2674005.2674994

  14. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51, 122–144 (2004). https://doi.org/10.1016/j.jalgor.2003.12.002

    Article  MathSciNet  Google Scholar 

  15. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and Zipf-like distributions: evidence and implications. In: Proceedings of the Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE INFOCOM 1999), Conference on Computer Communications. The Future is Now (Cat. No. 99CH36320) (1999). https://doi.org/10.1109/infcom.1999.749260

  16. Liu, S., Kang, L., Chen, L., Ni, L.: Distributed incomplete pattern matching via a novel weighted bloom filter. In: 2012 IEEE 32nd International Conference on Distributed Computing Systems (2012). https://doi.org/10.1109/icdcs.2012.24

  17. Luo, L., Guo, D., Ma, R.T.B., Rottenstreich, O., Luo, X.: Optimizing bloom filter: challenges, solutions, and comparisons. IEEE Commun. Surv. Tutorials. 21, 1912–1949 (2019). https://doi.org/10.1109/comst.2018.2889329

    Article  Google Scholar 

  18. Charikar, M., Chen, K., Farach-Colton, M.: Presented at the Finding Frequent Items in Data Streams (2002). https://doi.org/10.1007/3-540-45465-9_59

  19. Hua, Y., Xiao, B., Veeravalli, B., Feng, D.: Locality-sensitive bloom filter for approximate membership query. IEEE Trans. Comput. 61, 817–830 (2012). https://doi.org/10.1109/tc.2011.108

    Article  MathSciNet  Google Scholar 

  20. Alexander, H., Khalil, I., Cameron, C., Tari, Z., Zomaya, A.: Cooperative web caching using dynamic interest-tagged filtered bloom filters. IEEE Trans. Parallel Distrib. Syst. 26, 2956–2969 (2015). https://doi.org/10.1109/tpds.2014.2363458

    Article  Google Scholar 

  21. Sun, B., Luo, L., Li, S., Chen, Y., Guo, D.: The parallelized cuckoo filter for cold data representation. In: 2021 IEEE 23rd International Conference on High Performance Computing & Communications; 7th International Conference on Data Science & Systems; 19th International Conference on Smart City; 7th International Conference on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys) (2021). https://doi.org/10.1109/hpcc-dss-smartcity-dependsys53884.2021.00055

  22. Dayan, N., Twitto, M.: Chucky: a succinct cuckoo filter for LSM-tree. In: Proceedings of the 2021 International Conference on Management of Data, New York (2021). https://doi.org/10.1145/3448016.3457273

  23. Breslow, A.D., Jayasena, N.S.: Morton filters: fast, compressed sparse cuckoo filters. VLDB J. 29, 731–754 (2019). https://doi.org/10.1007/s00778-019-00561-0

    Article  Google Scholar 

  24. Einziger, G., Friedman, R.: Counting with TinyTable. In: Proceedings of the 17th International Conference on Distributed Computing and Networking, New York (2016). https://doi.org/10.1145/2833312.2833449

  25. Fountoulakis, N., Khosla, M., Panagiotou, K.: The multiple-orientability thresholds for random hypergraphs. Combinator. Probab. Comp. 25, 870–908 (2015). https://doi.org/10.1017/s0963548315000334

    Article  MathSciNet  Google Scholar 

  26. Dietzfelbinger, M., Weidling, C.: Balanced allocation and dictionaries with tightly packed constant size bins. Theor. Comput. Sci. 380, 47–68 (2007). https://doi.org/10.1016/j.tcs.2007.02.054

    Article  MathSciNet  Google Scholar 

  27. Fan, B., Andersen, D., Kaminsky, M.: MemC3: compact and concurrent MemCache with dumber caching and smarter hashing. In: Symposium on Networked Systems Design and Implementation (2013)

    Google Scholar 

  28. Fu, P., Luo, L., Guo, D., Zhao, X., Li, S., Wang, H.: Jump filter: a dynamic sketch for big data governance. J. Softw. 34(3) (2022)

    Google Scholar 

  29. Fu, P., Luo, L., Li, S., Guo, D., Cheng, G., Zhou, Y.: The vertical cuckoo filters: a family of insertion-friendly sketches for online applications. In: 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS). IEEE (2021)

    Google Scholar 

  30. Li, S., Luo, L., Guo, D., Zhao, Y.: Stable cuckoo filter for data streams. In: 2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS). IEEE (2021)

    Google Scholar 

  31. Luo, L., Fu, P., Li, S., Guo, D., Zhang, Q., Wang, H.: Ark Filter: A General and Space-Efficient Sketch for Network Flow Analysis IEEE/ACM Transactions on Networking

    Google Scholar 

  32. Fu, P., Luo, L., Guo, D., Li, S., Zhou, Y.: A Shifting Filter Framework for Dynamic Set Queries IEEE/ACM Transactions on Networking

    Google Scholar 

Download references

Acknowledgement

This work is supported by National Natural Science Foundation of China under Grant No. 62002378, as well as partially funded by the Research Funding of NUDT under Grant ZK20-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lailong Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, X., Luo, L., Zou, W., Yang, X., Guo, D. (2024). Popularity Cuckoo Filter: Always Keeping Popular Items in Mind. In: Tari, Z., Li, K., Wu, H. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2023. Lecture Notes in Computer Science, vol 14491. Springer, Singapore. https://doi.org/10.1007/978-981-97-0808-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0808-6_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0807-9

  • Online ISBN: 978-981-97-0808-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics