Managing Comprehensive Research Instrument Descriptions Within a Scholarly Knowledge Graph | SpringerLink
Skip to main content

Managing Comprehensive Research Instrument Descriptions Within a Scholarly Knowledge Graph

  • Conference paper
  • First Online:
Sustainability and Empowerment in the Context of Digital Libraries (ICADL 2024)

Abstract

In research, measuring instruments play a crucial role in producing the data that underpin scientific discoveries. Information about instruments is essential in data interpretation and, thus, knowledge production. However, if at all available and accessible, such information is scattered across numerous data sources. Relating the relevant details, e.g. instrument specifications or calibrations, with associated research assets (data, but also operating infrastructures) is challenging. Moreover, understanding the (possible) use of instruments is essential for researchers in experiment design and execution. To address these challenges, we propose a Knowledge Graph (KG) based approach for representing, publishing, and using information, extracted from various data sources, about instruments and associated scholarly artefacts. The resulting KG serves as a foundation for exploring and gaining a deeper understanding of the use and role of instruments in research, discovering relations between instruments and associated artefacts (articles and datasets), and opens the possibility to quantify the impact of instruments in research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.dbpedia.org.

  2. 2.

    https://www.wikidata.org/wiki/Wikidata:Main_Page.

  3. 3.

    https://hi-knowledge.org.

  4. 4.

    https://www.orkg.org/.

  5. 5.

    https://datacite.org/.

  6. 6.

    https://sensor.awi.de/.

  7. 7.

    https://github.com/rdawg-pidinst/schema/blob/master/schema.rst.

  8. 8.

    https://api.datacite.org/graphql.

  9. 9.

    https://dashboard.awi.de/data-xxl/api/#/default/saveData.

  10. 10.

    https://www.pangaea.de/.

  11. 11.

    https://api.unpaywall.org/v2/10.1186/s12920-019-0613-5?email=unpaywall_01@example.com.

  12. 12.

    https://orkg.org/help-center/article/20/ORKG_Research_fields_taxonomy.

  13. 13.

    https://gitlab.com/TIBHannover/orkg/orkg-ontology/-/blob/master/orkg-core.ttl?ref_type=heads.

References

  1. Balch, A.H., Lee, M.W.: Vertical seismic profiling: technique, applications, and case histories (1984)

    Google Scholar 

  2. Brack, A., D’Souza, J., Hoppe, A., Auer, S., Ewerth, R.: Domain-independent extraction of scientific concepts from research articles. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12035, pp. 251–266. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45439-5_17

    Chapter  Google Scholar 

  3. Brack, A., Hoppe, A., Buschermöhle, P., Ewerth, R.: Cross-domain multi-task learning for sequential sentence classification in research papers. In: Proceedings of the 22nd ACM/IEEE Joint Conference on Digital Libraries, JCDL 2022, Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3529372.3530922

  4. Brown, N.: New generation ctd system (conductivity-temperature-depth sensor) (1988). https://doi.org/10.1109/48.567

  5. D’Souza, J., Auer, S.: Computer science named entity recognition in the open research knowledge graph. In: Tseng, Y.H., Katsurai, M., Nguyen, H.N. (eds.) From Born-Physical to Born-Virtual: Augmenting Intelligence in Digital Libraries, pp. 35–45. Springer International Publishing, Cham (2022)

    Google Scholar 

  6. Enders, M., et al.: A conceptual map of invasion biology: integrating hypotheses into a consensus network. Glob. Ecol. Biogeogr. 29(6), 978–991 (2020)

    Article  Google Scholar 

  7. Ernst, P., Meng, C., Siu, A., Weikum, G.: Knowlife: a knowledge graph for health and life sciences, pp. 1254–1257, March 2014. https://doi.org/10.1109/ICDE.2014.6816754

  8. Hebbeln, D., et al.: Environmental forcing of the campeche cold-water coral province, southern gulf of Mexico. Biogeosciences 11(7), 1799–1815 (2014). https://doi.org/10.5194/bg-11-1799-2014

    Article  Google Scholar 

  9. Hebbeln, D., et al.: Expedition MSM20/4 Scientists: Physical oceanography from CTD during Maria S. Merian cruise MSM20/4 in spring 2012 (2014). https://doi.org/10.1594/PANGAEA.834741, supplement to: Hebbeln, D et al. (2014): Environmental forcing of the Campeche cold-water coral province, southern Gulf of Mexico. Biogeosciences, 11(7), 1799-1815, https://doi.org/10.5194/bg-11-1799-2014

  10. Heger, T., et al.: Conceptual frameworks and methods for advancing invasion ecology. Ambio 42(5), 527–540 (2013)

    Article  Google Scholar 

  11. Jain, N.: Domain-specific knowledge graph construction for semantic analysis. In: Harth, A., Presutti, V., Troncy, R., Acosta, M., Polleres, A., Fernández, J.D., Xavier Parreira, J., Hartig, O., Hose, K., Cochez, M. (eds.) The Semantic Web: ESWC 2020 Satellite Events, pp. 250–260. Springer International Publishing, Cham (2020)

    Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Le-Phuoc, D., Nguyen Mau Quoc, H., Ngo Quoc, H., Tran Nhat, T., Hauswirth, M.: The graph of things: a step towards the live knowledge graph of connected things. J. Web Semant. 37-38, 25–35 (2016). https://doi.org/10.1016/j.websem.2016.02.003

  14. Lehmann, J., et al.: Dbpedia - a large-scale, multilingual knowledge base extracted from wikipedia. Semant. Web J. 6 (2014). https://doi.org/10.3233/SW-140134

  15. Lin, M., Jin, M., Liu, Y., Bai, Y.: Satellite and instrument entity recognition using a pre-trained language model with distant supervision. Int. J. Digit. Earth 15, 1290–1304 (2022). https://doi.org/10.1080/17538947.2022.2107098

  16. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence-a practical guide. J. Exp. Botany 51(345), 659–668 (2000). https://doi.org/10.1093/jexbot/51.345.659

  17. Pan, X., Zhang, B., May, J., Nothman, J., Knight, K., Ji, H.: Cross-lingual name tagging and linking for 282 languages. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1946–1958 (2017)

    Google Scholar 

  18. Stocker, M., et al.: Persistent identification of instruments. Data Sci. J. 19 (2020). https://doi.org/10.5334/dsj-2020-018

  19. Stocker, M., et al.: Fair scientific information with the open research knowledge graph. FAIR Connect 1(1), 19–21 (2023)

    Article  Google Scholar 

  20. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014). https://doi.org/10.1145/2629489

  21. Wu, J., Orlandi, F., Pathan, M.S., O’Sullivan, D., Dev, S.: Augmenting weather sensor data with remote knowledge graphs. In: IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, pp. 1264–1267 (2022). https://doi.org/10.1109/IGARSS46834.2022.9883498

  22. Zhu, R., et al.: Environmental observations in knowledge graphs. In: DaMaLOS, pp. 1–11 (2021)

    Google Scholar 

Download references

Acknowledgment

This work was co-funded by the European Research Council for the project ScienceGRAPH (Grant agreement ID: 819536) and the German Research Foundation (DFG) project NFDI4DS (PN: 460234259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Haris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haris, M., Auer, S., Stocker, M. (2025). Managing Comprehensive Research Instrument Descriptions Within a Scholarly Knowledge Graph. In: Oliver, G., Frings-Hessami, V., Du, J.T., Tezuka, T. (eds) Sustainability and Empowerment in the Context of Digital Libraries. ICADL 2024. Lecture Notes in Computer Science, vol 15494. Springer, Singapore. https://doi.org/10.1007/978-981-96-0868-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0868-3_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0867-6

  • Online ISBN: 978-981-96-0868-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics