Abstract
In research, measuring instruments play a crucial role in producing the data that underpin scientific discoveries. Information about instruments is essential in data interpretation and, thus, knowledge production. However, if at all available and accessible, such information is scattered across numerous data sources. Relating the relevant details, e.g. instrument specifications or calibrations, with associated research assets (data, but also operating infrastructures) is challenging. Moreover, understanding the (possible) use of instruments is essential for researchers in experiment design and execution. To address these challenges, we propose a Knowledge Graph (KG) based approach for representing, publishing, and using information, extracted from various data sources, about instruments and associated scholarly artefacts. The resulting KG serves as a foundation for exploring and gaining a deeper understanding of the use and role of instruments in research, discovering relations between instruments and associated artefacts (articles and datasets), and opens the possibility to quantify the impact of instruments in research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
References
Balch, A.H., Lee, M.W.: Vertical seismic profiling: technique, applications, and case histories (1984)
Brack, A., D’Souza, J., Hoppe, A., Auer, S., Ewerth, R.: Domain-independent extraction of scientific concepts from research articles. In: Jose, J.M., et al. (eds.) ECIR 2020. LNCS, vol. 12035, pp. 251–266. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45439-5_17
Brack, A., Hoppe, A., Buschermöhle, P., Ewerth, R.: Cross-domain multi-task learning for sequential sentence classification in research papers. In: Proceedings of the 22nd ACM/IEEE Joint Conference on Digital Libraries, JCDL 2022, Association for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3529372.3530922
Brown, N.: New generation ctd system (conductivity-temperature-depth sensor) (1988). https://doi.org/10.1109/48.567
D’Souza, J., Auer, S.: Computer science named entity recognition in the open research knowledge graph. In: Tseng, Y.H., Katsurai, M., Nguyen, H.N. (eds.) From Born-Physical to Born-Virtual: Augmenting Intelligence in Digital Libraries, pp. 35–45. Springer International Publishing, Cham (2022)
Enders, M., et al.: A conceptual map of invasion biology: integrating hypotheses into a consensus network. Glob. Ecol. Biogeogr. 29(6), 978–991 (2020)
Ernst, P., Meng, C., Siu, A., Weikum, G.: Knowlife: a knowledge graph for health and life sciences, pp. 1254–1257, March 2014. https://doi.org/10.1109/ICDE.2014.6816754
Hebbeln, D., et al.: Environmental forcing of the campeche cold-water coral province, southern gulf of Mexico. Biogeosciences 11(7), 1799–1815 (2014). https://doi.org/10.5194/bg-11-1799-2014
Hebbeln, D., et al.: Expedition MSM20/4 Scientists: Physical oceanography from CTD during Maria S. Merian cruise MSM20/4 in spring 2012 (2014). https://doi.org/10.1594/PANGAEA.834741, supplement to: Hebbeln, D et al. (2014): Environmental forcing of the Campeche cold-water coral province, southern Gulf of Mexico. Biogeosciences, 11(7), 1799-1815, https://doi.org/10.5194/bg-11-1799-2014
Heger, T., et al.: Conceptual frameworks and methods for advancing invasion ecology. Ambio 42(5), 527–540 (2013)
Jain, N.: Domain-specific knowledge graph construction for semantic analysis. In: Harth, A., Presutti, V., Troncy, R., Acosta, M., Polleres, A., Fernández, J.D., Xavier Parreira, J., Hartig, O., Hose, K., Cochez, M. (eds.) The Semantic Web: ESWC 2020 Satellite Events, pp. 250–260. Springer International Publishing, Cham (2020)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Le-Phuoc, D., Nguyen Mau Quoc, H., Ngo Quoc, H., Tran Nhat, T., Hauswirth, M.: The graph of things: a step towards the live knowledge graph of connected things. J. Web Semant. 37-38, 25–35 (2016). https://doi.org/10.1016/j.websem.2016.02.003
Lehmann, J., et al.: Dbpedia - a large-scale, multilingual knowledge base extracted from wikipedia. Semant. Web J. 6 (2014). https://doi.org/10.3233/SW-140134
Lin, M., Jin, M., Liu, Y., Bai, Y.: Satellite and instrument entity recognition using a pre-trained language model with distant supervision. Int. J. Digit. Earth 15, 1290–1304 (2022). https://doi.org/10.1080/17538947.2022.2107098
Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence-a practical guide. J. Exp. Botany 51(345), 659–668 (2000). https://doi.org/10.1093/jexbot/51.345.659
Pan, X., Zhang, B., May, J., Nothman, J., Knight, K., Ji, H.: Cross-lingual name tagging and linking for 282 languages. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1946–1958 (2017)
Stocker, M., et al.: Persistent identification of instruments. Data Sci. J. 19 (2020). https://doi.org/10.5334/dsj-2020-018
Stocker, M., et al.: Fair scientific information with the open research knowledge graph. FAIR Connect 1(1), 19–21 (2023)
Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014). https://doi.org/10.1145/2629489
Wu, J., Orlandi, F., Pathan, M.S., O’Sullivan, D., Dev, S.: Augmenting weather sensor data with remote knowledge graphs. In: IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, pp. 1264–1267 (2022). https://doi.org/10.1109/IGARSS46834.2022.9883498
Zhu, R., et al.: Environmental observations in knowledge graphs. In: DaMaLOS, pp. 1–11 (2021)
Acknowledgment
This work was co-funded by the European Research Council for the project ScienceGRAPH (Grant agreement ID: 819536) and the German Research Foundation (DFG) project NFDI4DS (PN: 460234259).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Haris, M., Auer, S., Stocker, M. (2025). Managing Comprehensive Research Instrument Descriptions Within a Scholarly Knowledge Graph. In: Oliver, G., Frings-Hessami, V., Du, J.T., Tezuka, T. (eds) Sustainability and Empowerment in the Context of Digital Libraries. ICADL 2024. Lecture Notes in Computer Science, vol 15494. Springer, Singapore. https://doi.org/10.1007/978-981-96-0868-3_3
Download citation
DOI: https://doi.org/10.1007/978-981-96-0868-3_3
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-96-0867-6
Online ISBN: 978-981-96-0868-3
eBook Packages: Computer ScienceComputer Science (R0)