BDC Dataset: A Comprehensive Dataset for Automated Build Damage Classification | SpringerLink
Skip to main content

BDC Dataset: A Comprehensive Dataset for Automated Build Damage Classification

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2024)

Abstract

The growing awareness of property safety inspections among governments and the public has fueled the demand for efficient, automated methods of damage assessment. Despite this, there is a notable scarcity of datasets specifically designed for house damage classification tasks. To address this gap, this paper presents the Build Damage Classification (BDC) Dataset, an enhanced dataset built upon xBD, incorporating three distinct sub-datasets for building damage classification. Additionally, to assess the impact of noise and low-quality data on model performance, two contrastive learning methods-DINOv2 and MoCo v2-are applied to classify property damage resulting from natural disasters. Experimental results reveal that DINOv2 significantly outperforms traditional CNNs and MoCo v2, with a notable improvement of approximately 20% in precision, recall, and F1 scores on the highly imbalanced and low-quality BDC dataset. Moreover, attention maps and gradient visualization techniques are used to explain the performance differences between the models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stepinac, M., et al.: Damage classification of residential buildings in historical downtown after the ML5.5 earthquake in Zagreb, Croatia in 2020. Int. J. Disast. Risk Reduct. 56, 102140 (2021). https://doi.org/10.1016/j.ijdrr.2021.102140

    Article  Google Scholar 

  2. Goyal, P.K.: Cyclonic damage assessment of rural houses for the east coastal region of India. Prog. Disast. Sci. 15, 100238 (2022). https://doi.org/10.1016/j.pdisas.2022.100238

    Article  Google Scholar 

  3. Habibi, A., Delavar, M.R., Nazari, B., Pirasteh, S., Sadeghian, M.S.: A novel approach for flood hazard assessment using hybridized ensemble models and feature selection algorithms. Int. J. Appl. Earth Obs. Geoinf. 122, 103443 (2023). https://doi.org/10.1016/j.jag.2023.103443

    Article  Google Scholar 

  4. Islam, M.M., Matsushita, S., Noguchi, R., Ahamed, T.: A damage-based crop insurance system for flash flooding: a satellite remote sensing and econometric approach. Asia-Pacific J. Reg. Sci. 6(1), 47–89 (2022). https://doi.org/10.1007/s41685-021-00220-9

    Article  Google Scholar 

  5. Shrestha, B.B., Kawasaki, A., Zin, W.W.: Development of flood damage assessment method for residential areas considering various house types for Bago Region of Myanmar. Int. J. Disast. Risk Reduct. 66, 102602 (2021). https://doi.org/10.1016/j.ijdrr.2021.102602

    Article  Google Scholar 

  6. Van Der Sande, C., Soudarissanane, S., Khoshelham, K.: Assessment of relative accuracy of AHN-2 laser scanning data using planar features. Sensors (Basel) 10(9), 8198–8214 (2010). https://doi.org/10.3390/s100908198

    Article  Google Scholar 

  7. Yamazaki, F., Kouchi, K., Kohiyama, M., Muraoka, N., Matsuoka, M.: Earthquake damage detection using high-resolution satellite images. In: IGARSS 2004 IEEE International Geoscience and Remote Sensing Symposium, pp. 2280–2283. IEEE (2004)

    Google Scholar 

  8. Bai, Y., Chen, X., Kirillov, A., Yuille, A., Berg, A.C.: Point-level region contrast for object detection pre-training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16061–16070 (2022)

    Google Scholar 

  9. Saito, K., Spence, R.J., Going, C., Markus, M.: Using high-resolution satellite images for post-earthquake building damage assessment: a study following the 26 January 2001 Gujarat earthquake. Earthq. Spectra 20(1), 145–169 (2004)

    Article  Google Scholar 

  10. Rastiveis, H., Hosseini-Zirdoo, E., Eslamizade, F.: Automatic blocked roads assessment after earthquake using high resolution satellite imagery. Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci. XL-1/W5, 601–605 (2015). https://doi.org/10.5194/isprsarchives-XL-1-W5-601-2015

  11. Elberink, S.O., Shoko, M., Fathi, S.A., Rutzinger, M.: Detection of collapsed buildings by classifying segmented airborne laser scanner data. Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci. 38(5), W12 (2011)

    Google Scholar 

  12. Chehata, N., Guo, L., Mallet, C.: Airborne lidar feature selection for urban classification using random forests. In: Laserscanning 2009 (2009)

    Google Scholar 

  13. Gong, L., Wang, C., Wu, F., Zhang, J., Zhang, H., Li, Q.: Earthquake-induced building damage detection with post-event sub-meter VHR TerraSAR-X staring spotlight imagery. Remote Sens. 8(11) (2016). https://doi.org/10.3390/rs8110887

  14. Fujita, A., Sakurada, K., Imaizumi, T., Ito, R., Hikosaka, S., Nakamura, R.:Damage detection from aerial images via convolutional neural networks. In: 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), pp. 5–8. IEEE (2017)

    Google Scholar 

  15. Kaur, S., Gupta, S., Singh, S., Koundal, D., Zaguia, A.: Convolutional neural network based hurricane damage detection using satellite images. Soft. Comput. 26(16), 7831–7845 (2022). https://doi.org/10.1007/s00500-022-06805-6

    Article  Google Scholar 

  16. Fan, J., Xu, C., Zhang, J.: An ensemble learning approach of multi-model for classifying house damage. In: 2021 2nd International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), pp. 145–152 (2021)

    Google Scholar 

  17. Li, Y., Gu, S.: Detecting post hurricane house damage using geographic information related multi-resource classification model. In: 2021 2nd International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), pp. 492–501 (2021)

    Google Scholar 

  18. Krieger, J., Higgins, D.L.: Housing and health: time again for public health action. Am. J. Public Health 92(5), 758–768 (2002). https://doi.org/10.2105/ajph.92.5.758

    Article  Google Scholar 

  19. Nix, E., Paulose, J., Shrubsole, C., Altamirano-Medina, H., Davies, M., Khosla, R., et al.: Evaluating housing health hazards: prevalence, practices and priorities in Delhi’s informal settlements. J. Urban Health 97(4), 502–518 (2020). https://doi.org/10.1007/s11524-020-00442-w

    Article  Google Scholar 

  20. Standen, J.C., Morgan, G.G., Sowerbutts, T., Blazek, K., Gugusheff, J., Puntsag, O. et al.: Prioritising housing maintenance to improve health in indigenous communities in NSW over 20 years. Int. J. Environ. Res. Public Health 17(16) (2020). https://doi.org/10.3390/ijerph17165946

  21. Zahs, V., Anders, K., Kohns, J., Stark, A., Höfle, B.: Classification of structural building damage grades from multi-temporal photogrammetric point clouds using a machine learning model trained on virtual laser scanning data. Int. J. Appl. Earth Obs. Geoinf. 122, 103406 (2023). https://doi.org/10.1016/j.jag.2023.103406

    Article  Google Scholar 

  22. Mohd, T., Mohamed Saraf, M., Pin, S.F., Hasbullah, M.N.: Designing the invention house assessment form for Kuala Krai, Malaysia. Procedia Social Behav. Sci. 234, 317–325 (2016). https://doi.org/10.1016/j.sbspro.2016.10.248

  23. Xu, J., Zeng, F., Liu, W., Takahashi, T.: Damage detection and level classification of roof damage after typhoon faxai based on aerial photos and deep learning. Appl. Sci. 12(10), 4912 (2022)

    Article  Google Scholar 

  24. Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V., et al.: Dinov2: learning robust visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)

  25. Gupta, R., Goodman, B., Patel, N.N., Hosfelt, R., Sajeev, S., Heim, E.T., et al.: Creating xBD: a dataset for assessing building damage from satellite imagery. In: CVPR Workshops 2019 (2019)

    Google Scholar 

  26. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25 (2012)

    Google Scholar 

  27. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  29. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  30. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2017, pp. 4700–4708 (2017)

    Google Scholar 

  31. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Proceedings of the European Conference on Computer Vision (ECCV) 2018, pp. 116–131 (2018)

    Google Scholar 

  32. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \({<}0.5\) MB model size. arXiv preprint arXiv:1602.07360 (2016)

  33. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., et al.: MnasNet: platform-aware neural architecture search for mobile. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2820–2828 (2019)

    Google Scholar 

  34. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Zi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zi, X. et al. (2025). BDC Dataset: A Comprehensive Dataset for Automated Build Damage Classification. In: Sheng, Q.Z., et al. Advanced Data Mining and Applications. ADMA 2024. Lecture Notes in Computer Science(), vol 15387. Springer, Singapore. https://doi.org/10.1007/978-981-96-0811-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0811-9_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0810-2

  • Online ISBN: 978-981-96-0811-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics