A Privacy-Preserving Encryption Framework for Big Data Analysis | SpringerLink
Skip to main content

A Privacy-Preserving Encryption Framework for Big Data Analysis

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2024 (WISE 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15440))

Included in the following conference series:

  • 183 Accesses

Abstract

The advent of big data has brought numerous conveniences and benefits but has also heightened users’ privacy concerns. Traditional methods like data masking and encryption secure user access control but suffer from storage space wastage due to data padding limitations. Moreover, these systems face decoding challenges and risk exposing confidential information after decryption. To overcome these issues, this study aims to develop a format-preserving encryption (FPE) based privacy-preserving technique to maintain user access control while optimizing anomaly detection accuracy and minimizing information loss. This method first generates a fixed-length key for each algorithm based on specified key length parameters, then continue the same length and format for the ciphertext as the original plaintext ensuring compatibility with databases. Our analysis of accuracy, information loss over ac-curacy, and information loss over root mean square error (RMSE) demonstrates the overall efficacy of the proposed method. Our experiment on brain computer interface (BCI) based electroencephalogram (EEG) data achieves 96.55% accuracy and requires only 2.41 s of computation for user access control. Remarkably, use of cryptography does not significantly impact performance compared to a non-privacy-preserving framework. Our developed framework will guide future researchers to develop more effective privacy protection mechanisms in BCI technology, ensuring the security of confidential information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cui, B., Zhang, B., Wang, K.: A data masking scheme for sensitive big data based on format-preserving encryption. In: 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), vol. 1, pp. 518–524. IEEE (2017)

    Google Scholar 

  2. Khanam, T., Siuly, S., Wang, H.: Analysing big brain signal data for advanced brain computer interface system. In: Hua, W., Wang, H., Li, L. (eds.) ADC 2022. LNCS, vol. 13459, pp. 103–114. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15512-3_8

    Chapter  Google Scholar 

  3. Khanam, T., Siuly, S., Wang, H.: An optimized artificial intelligence based technique for identifying motor imagery from EEGs for advanced brain computer interface technology. Neural Comput. Appl. 35(9), 6623–6634 (2023)

    Article  Google Scholar 

  4. Siuly, S., Li, Y., Zhang, Y.: EEG signal analysis and classification. IEEE Trans. Neural Syst. Rehabilit. Eng. 11, 141–144 (2016)

    Google Scholar 

  5. Siuly, S., Li, Y.: Discriminating the brain activities for brain-computer interface applications through the optimal allocation-based approach. Neural Comput. Appl. 26, 799–811 (2015)

    Article  Google Scholar 

  6. Alvi, A.M., Siuly, S., Wang, H.: Neurological abnormality detection from electroencephalography data: a review. Artif. Intell. Rev. 55(3), 2275–2312 (2022)

    Article  Google Scholar 

  7. Farsi, L., Siuly, S., Kabir, E., Wang, H.: Classification of alcoholic EEG signals using a deep learning method. IEEE Sens. J. 21, 3552–3560 (2020)

    Article  Google Scholar 

  8. Siuly, S., et al.: A new framework for automatic detection of patients with mild cognitive impairment using resting-state EEG signals. IEEE Trans. Neural Syst. Rehabil. Eng. 28(9), 1966–1976 (2020)

    Article  Google Scholar 

  9. Tawhid, M.N.A., Siuly, S., Li, T.: A convolutional long short-term memory-based neural network for epilepsy detection from EEG. IEEE Trans. Instrum. Meas. 71, 1–11 (2022)

    Article  Google Scholar 

  10. Tawhid, M.N.A., Siuly, S., Wang, K., Wang, H.: Automatic and efficient framework for identifying multiple neurological disorders from EEG signals. IEEE Trans. Technol. Soc. 4(1), 76–86 (2023)

    Article  Google Scholar 

  11. Siuly, S., Li, Y., Zhang, Y.: Significance of EEG signals in medical and health research. In: EEG Signal Analysis and Classification. HIS, pp. 23–41. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47653-7_2

    Chapter  Google Scholar 

  12. Martinovic, I., Davies, D., Frank, M., Perito, D., Ros, T., Song, D.: On the feasibility of \(\{\)Side-Channel\(\}\) attacks with \(\{\)Brain-Computer\(\}\) interfaces. In: 21st USENIX Security Symposium (USENIX Security 2012), pp. 143–158 (2012)

    Google Scholar 

  13. Mandal, A., Saxena, N.: SoK: your mind tells a lot about you: on the privacy leakage via brainwave devices. In: Proceedings of the 15th ACM Conference on Security and Privacy in Wireless and Mobile Networks, pp. 175–187 (2022)

    Google Scholar 

  14. Sun, X., Wang, H., Li, J., Pei, J.: Publishing anonymous survey rating data. Data Min. Knowl. Discov. 23, 379–406 (2011)

    Article  MathSciNet  Google Scholar 

  15. Yin, J., Tang, M., Cao, J., Wang, H., You, M., Lin, Y.: Vulnerability exploitation time prediction: an integrated framework for dynamic imbalanced learning. World Wide Web (2022)

    Google Scholar 

  16. Kabir, E., Wang, H.: Conditional purpose based access control model for privacy protection. In: Proceedings of the Twentieth Australasian Conference on Australasian Database, vol. 92, pp. 137–144 (2009)

    Google Scholar 

  17. Ge, Y.-F., Orlowska, M., Cao, J., Wang, H., Zhang, Y.: MDDE: multitasking distributed differential evolution for privacy-preserving database fragmentation. VLDB J. 31, 1–19 (2022)

    Article  Google Scholar 

  18. Popescu, A.B., et al.: Privacy preserving classification of EEG data using machine learning and homomorphic encryption. Appl. Sci. 11(16), 7360 (2021)

    Article  Google Scholar 

  19. Agarwal, A., et al.: Protecting privacy of users in brain-computer interface applications. IEEE Trans. Neural Syst. Rehabil. Eng. 27(8), 1546–1555 (2019)

    Article  Google Scholar 

  20. Hang, W., et al.: Fedeeg: federated EEG decoding via inter-subject structure matching. In: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE (2023)

    Google Scholar 

  21. Zhang, W., Wu, D.: Lightweight source-free transfer for privacy-preserving motor imagery classification. IEEE Trans. Cogn. Dev. Syst. 15(2), 938–949 (2022)

    Article  Google Scholar 

  22. Debie, E., Moustafa, N., Whitty, M.T.: A privacy-preserving generative adversarial network method for securing EEG brain signals. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)

    Google Scholar 

  23. Nakachi, T., Ishihara, H., Kiya, H.: Privacy-preserving network BMI decoding of covert spatial attention. In: 2018 12th International Conference on Signal Processing and Communication Systems (ICSPCS), pp. 1–8. IEEE (2018)

    Google Scholar 

  24. Konduru, S.S., Saraswat, V.: Privacy preserving records sharing using blockchain and format preserving encryption. Cryptology ePrint Archive (2023)

    Google Scholar 

  25. Pérez-Resa, A., Garcia-Bosque, M., Sánchez-Azqueta, C., Celma, S.: A new method for format preserving encryption in high-data rate communications. IEEE Access 8, 21003–21016 (2020)

    Article  Google Scholar 

  26. Karopoulos, G., Ntantogian, C., Xenakis, C.: Masker: masking for privacy-preserving aggregation in the smart grid ecosystem. Comput. Secur. 73, 307–325 (2018)

    Article  Google Scholar 

  27. Ang, K.K., Chin, Z.Y., Wang, C., Guan, C., Zhang, H.: Filter bank common spatial pattern algorithm on BCI competition iv datasets 2A and 2B. Front. Neurosci. 6, 39 (2012)

    Article  Google Scholar 

  28. Frikha, T., Chaari, A., Chaabane, F., Cheikhrouhou, O., Zaguia, A.: [retracted] healthcare and fitness data management using the IoT-based blockchain platform. J. Healthc. Eng. 2021(1), 9978863 (2021)

    Google Scholar 

  29. Hernández-Álvarez, L., De Fuentes, J.M., González-Manzano, L., Encinas, L.H.: Smartcampp-smartphone-based continuous authentication leveraging motion sensors with privacy preservation. Pattern Recogn. Lett. 147, 189–196 (2021)

    Article  Google Scholar 

  30. Vapnik, V.N.: The support vector method. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 261–271. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0020166

    Chapter  Google Scholar 

  31. Huang, B.F., Boutros, P.C.: The parameter sensitivity of random forests. BMC Bioinform. 17, 1–13 (2016)

    Article  Google Scholar 

  32. Murphy, K.P., et al.: Naive Bayes classifiers. Univ. Br. Columbia 18(60), 1–8 (2006)

    Google Scholar 

  33. Wu, H., et al.: Online privacy-preserving EEG classification by source-free transfer learning. IEEE Trans. Neural Syst. Rehabil. Eng. (2024)

    Google Scholar 

  34. Ge, Y.-F., Wang, H., Cao, J., Zhang, Y., Jiang, X.: Privacy-preserving data publishing: an information-driven distributed genetic algorithm. World Wide Web 27, 01 (2024)

    Article  Google Scholar 

  35. Zhang, Y., Shen, Y., Wang, H., Yong, J., Jiang, X.: On secure wireless communications for IoT under eavesdropper collusion. IEEE Trans. Autom. Sci. Eng. 13(3), 1281–1293 (2016)

    Article  Google Scholar 

  36. You, M., Ge, Y.-F., Wang, K., Wang, H., Cao, J., Kambourakis, G.: Hierarchical adaptive evolution framework for privacy-preserving data publishing. World Wide Web 27, 07 (2024)

    Article  Google Scholar 

  37. Mongardi, S., Pinoli, P.: Exploring federated learning for emotion recognition on brain-computer interfaces. In: Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization, pp. 622–626 (2024)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taslima Khanam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khanam, T., Siuly, S., Wang, K., Zheng, Z. (2025). A Privacy-Preserving Encryption Framework for Big Data Analysis. In: Barhamgi, M., Wang, H., Wang, X. (eds) Web Information Systems Engineering – WISE 2024. WISE 2024. Lecture Notes in Computer Science, vol 15440. Springer, Singapore. https://doi.org/10.1007/978-981-96-0576-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0576-7_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0575-0

  • Online ISBN: 978-981-96-0576-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics