Weighted Linear Regression with Optimized Gap for Learned Index | SpringerLink
Skip to main content

Weighted Linear Regression with Optimized Gap for Learned Index

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2024 (WISE 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15439))

Included in the following conference series:

  • 184 Accesses

Abstract

Learned index is a novel index structure and changed the way we treat the traditional field of DBMS index. It views index as models and uses a learning-based approach to fit the distribution of stored data. The models input the key and output the predicted location of the target keys. To achieve higher query throughput, we propose WELGOR. We train the linear regression model with priority of the keys. To improve the mapping ability of the model, we use a hybrid model which adds the design of a simple linear model to better indexing keys. Besides, we also optimize the space allocation for gap design in node while achieving comparable throughput. Experiments show that WELGOR achieves 23% to 93% improvement in throughput compared with state-of-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amazon sales rank data for print and kindle books.: (2019). https://www.kaggle.com/ucffool/ amazon-sales-rank-data-for-print-and-kindle-books

  2. AWS, A.: Openstreetmap on AWS (2021). https://registry.opendata.aws/osm

  3. benchmark, R.: A repository to test PGMs and RMIs on different platforms using a much simpler benchmark harness than SOSD (2020). https://github.com/RyanMarcus/rmi_pgm

  4. cpp btree: The C++ B-Tree library implemented by Google (2011). https://code.google.com/archive/p/cpp-btree

  5. Chen, Z., Hua, Y., Ding, B., Zuo, P.: Lock-free concurrent level hashing for persistent memory. In: 2020 USENIX Annual Technical Conference (USENIX ATC 20), pp. 799–812 (2020)

    Google Scholar 

  6. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1082–1090 (2011)

    Google Scholar 

  7. Ding, J., et al.: Alex: an updatable adaptive learned index. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 969–984 (2020)

    Google Scholar 

  8. Ding, J., Nathan, V., Alizadeh, M., Kraska, T.: Tsunami: a learned multi-dimensional index for correlated data and skewed workloads. Proc. VLDB Endowment 14(2), 74–86 (2020)

    Article  Google Scholar 

  9. Ferragina, P., Vinciguerra, G.: The PGM-index: a fully-dynamic compressed learned index with provable worst-case bounds. Proc. VLDB Endowment 13(8), 1162–1175 (2020)

    Article  Google Scholar 

  10. Galakatos, A., Markovitch, M., Binnig, C., Fonseca, R., Kraska, T.: Fiting-tree: a data-aware index structure. In: Proceedings of the 2019 International Conference on Management of Data, pp. 1189–1206 (2019)

    Google Scholar 

  11. Ge, J., et al.: SALI: a scalable adaptive learned index framework based on probability models. Proc. ACM Manag. Data 1(4), 1–25 (2023)

    Article  Google Scholar 

  12. Kipf, A., et al.: RadixSpline: a single-pass learned index. In: Proceedings of the Third International Workshop on Exploiting Artificial Intelligence Techniques for Data Management, pp. 1–5 (2020)

    Google Scholar 

  13. Kraska, T., Beutel, A., Chi, E.H., Dean, J., Polyzotis, N.: The case for learned index structures. In: Proceedings of the 2018 International Conference on Management of Data, pp. 489–504 (2018)

    Google Scholar 

  14. Li, P., Hua, Y., Jia, J., Zuo, P.: FINEdex: a fine-grained learned index scheme for scalable and concurrent memory systems. Proc. VLDB Endowment 15(2), 321–334 (2021)

    Article  Google Scholar 

  15. Li, P., Lu, H., Zhu, R., Ding, B., Yang, L., Pan, G.: DILI: A distribution-driven learned index. arXiv preprint arXiv:2304.08817 (2023)

  16. Lu, B., Ding, J., Lo, E., Minhas, U.F., Wang, T.: APEX: a high-performance learned index on persistent memory. Proc. VLDB Endowment 15(3), 597–610 (2021)

    Article  Google Scholar 

  17. Mao, Y., Kohler, E., Morris, R.T.: Cache craftiness for fast multicore key-value storage. In: Proceedings of the 7th ACM European Conference on Computer Systems, pp. 183–196 (2012)

    Google Scholar 

  18. Nathan, V., Ding, J., Alizadeh, M., Kraska, T.: Learning multi-dimensional indexes. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 985–1000 (2020)

    Google Scholar 

  19. Pandey, V., Kipf, A., Neumann, T., Kemper, A.: How good are modern spatial analytics systems? Proc. VLDB Endowment 11(11), 1661–1673 (2018)

    Article  Google Scholar 

  20. S2 Geometry.: (2019). https://s2geometry.io/

  21. Wu, J., Zhang, Y., Chen, S., Chen, Y., Wang, J., Xing, C.: Updatable learned index with precise positions. Proc. VLDB Endow. 14(8), 1276–1288 (2021). https://doi.org/10.14778/3457390.3457393

  22. Wu, S., Cui, Y., Yu, J., Sun, X., Kuo, T., Xue, C.J.: NFL: robust learned index via distribution transformation. Proc. VLDB Endow. 15(10), 2188–2200 (2022). https://doi.org/10.14778/3547305.3547322

Download references

Acknowledgment

This work is supported by the Research Foundation of Science and Technology Plan Project of Guangzhou City (2023B01J0001, 2024B01W0004), the National Natural Science Foundation of China 62102463, and the Natural Science Foundation of Guangdong Province of China No. 2022A1515011135.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libin Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, H., Zheng, L., Yin, J. (2025). Weighted Linear Regression with Optimized Gap for Learned Index. In: Barhamgi, M., Wang, H., Wang, X. (eds) Web Information Systems Engineering – WISE 2024. WISE 2024. Lecture Notes in Computer Science, vol 15439. Springer, Singapore. https://doi.org/10.1007/978-981-96-0573-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0573-6_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0572-9

  • Online ISBN: 978-981-96-0573-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics