Video-Audio Multimodal Fall Detection Method | SpringerLink
Skip to main content

Video-Audio Multimodal Fall Detection Method

  • Conference paper
  • First Online:
PRICAI 2024: Trends in Artificial Intelligence (PRICAI 2024)

Abstract

Falls frequently present substantial safety hazards to those who are alone, particularly the elderly. Deploying a rapid and proficient method for detecting falls is a highly effective approach to tackle this concealed peril. The majority of existing fall detection methods rely on either visual data or wearable devices, both of which have drawbacks. This research presents a multimodal approach that integrates video and audio modalities to address the issue of fall detection systems and enhances the accuracy of fall detection in challenging environmental conditions. This multimodal approach, which leverages the benefits of attention mechanism in both video and audio streams, utilizes features from both modalities through feature-level fusion to detect falls in unfavorable conditions where visual systems alone are unable to do so. We assessed the performance of our multimodal fall detection model using Le2i and UP-Fall datasets. Additionally, we compared our findings with other fall detection methods. The outstanding results of our multimodal model indicate its superior performance compared to single fall detection models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amsaprabhaa, M., et al.: Multimodal spatiotemporal skeletal kinematic gait feature fusion for vision-based fall detection. Expert Syst. Appl. 212, 118681 (2023)

    Article  Google Scholar 

  2. Apicella, A., Snidaro, L.: Deep neural networks for real-time remote fall detection. In: Pattern Recognition. ICPR International Workshops and Challenges: Virtual Event, January 10–15, 2021, Proceedings, Part II. pp. 188–201. Springer (2021)

    Google Scholar 

  3. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  4. Carneiro, S.A., da Silva, G.P., Leite, G.V., Moreno, R., Guimaraes, S.J.F., Pedrini, H.: Multi-stream deep convolutional network using high-level features applied to fall detection in video sequences. In: 2019 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 293–298. IEEE (2019)

    Google Scholar 

  5. Chamle, M., Gunale, K., Warhade, K.: Automated unusual event detection in video surveillance. In: 2016 International Conference on Inventive Computation Technologies (ICICT), vol. 2, pp. 1–4. IEEE (2016)

    Google Scholar 

  6. Charfi, I., Miteran, J., Dubois, J., Atri, M., Tourki, R.: Definition and performance evaluation of a robust SVM based fall detection solution. In: 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems, pp. 218–224. IEEE (2012)

    Google Scholar 

  7. Cheffena, M.: Fall detection using smartphone audio features. IEEE J. Biomed. Health Inform. 20(4), 1073–1080 (2015)

    Article  Google Scholar 

  8. Dai, B., Yang, D., Ai, L., Zhang, P.: A novel video-surveillance-based algorithm of fall detection. In: 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp. 1–6. IEEE (2018)

    Google Scholar 

  9. Dai, W., Dai, C., Qu, S., Li, J., Das, S.: Very deep convolutional neural networks for raw waveforms. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 421–425. IEEE (2017)

    Google Scholar 

  10. D’mello, S.K., Kory, J.: A review and meta-analysis of multimodal affect detection systems. ACM Comput. Surv. (CSUR) 47(3), 1–36 (2015)

    Google Scholar 

  11. Fei, K., Wang, C., Zhang, J., Liu, Y., Xie, X., Tu, Z.: Flow-pose net: an effective two-stream network for fall detection. Vis. Comput. 39(6), 2305–2320 (2023)

    Article  Google Scholar 

  12. Golik, P., Tüske, Z., Schlüter, R., Ney, H.: Convolutional neural networks for acoustic modeling of raw time signal in LVCSR. In: Sixteenth Annual Conference of the International Speech Communication Association (2015)

    Google Scholar 

  13. Gonzalez, R.C.: Digital image processing. Pearson education India (2009)

    Google Scholar 

  14. Harrou, F., Zerrouki, N., Sun, Y., Houacine, A.: An integrated vision-based approach for efficient human fall detection in a home environment. IEEE Access 7, 114966–114974 (2019)

    Article  Google Scholar 

  15. Hasan, M.M., Islam, M.S., Abdullah, S.: Robust pose-based human fall detection using recurrent neural network. In: 2019 IEEE International Conference on Robotics, Automation, Artificial-intelligence and Internet-of-Things (RAAICON), pp. 48–51. IEEE (2019)

    Google Scholar 

  16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  17. Inturi, A.R., Manikandan, V., Garrapally, V.: A novel vision-based fall detection scheme using keypoints of human skeleton with long short-term memory network. Arab. J. Sci. Eng. 48(2), 1143–1155 (2023)

    Article  Google Scholar 

  18. Jiao, S., Li, G., Zhang, G., Zhou, J., Li, J.: Multimodal fall detection for solitary individuals based on audio-video decision fusion processing. Heliyon 10(8) (2024)

    Google Scholar 

  19. Kaur, P., Wang, Q., Shi, W.: Fall detection from audios with audio transformers. Smart Health 26, 100340 (2022)

    Article  Google Scholar 

  20. Kwolek, B., Kepski, M.: Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput. Methods Programs Biomed. 117(3), 489–501 (2014)

    Article  Google Scholar 

  21. Kwolek, B., Kepski, M.: Improving fall detection by the use of depth sensor and accelerometer. Neurocomputing 168, 637–645 (2015)

    Article  Google Scholar 

  22. Li, K., et al.: Uniformer: unifying convolution and self-attention for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 45(10), 12581–12600 (2023)

    Google Scholar 

  23. Lu, X., et al.: Three-dimensional physical and optical characteristics of aerosols over central china from long-term calipso and hysplit data. Remote Sens. 10(2), 314 (2018)

    Article  Google Scholar 

  24. Núñez-Marcos, A., Arganda-Carreras, I.: Transformer-based fall detection in videos. Eng. Appl. Artif. Intell. 132, 107937 (2024)

    Article  Google Scholar 

  25. Poonsri, A., Chiracharit, W.: Fall detection using gaussian mixture model and principle component analysis. In: 2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE), pp. 1–4. IEEE (2017)

    Google Scholar 

  26. Poonsri, A., Chiracharit, W.: Improvement of fall detection using consecutive-frame voting. In: 2018 International Workshop on Advanced Image Technology (IWAIT), pp. 1–4. IEEE (2018)

    Google Scholar 

  27. Popescu, M., Mahnot, A.: Acoustic fall detection using one-class classifiers. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3505–3508. IEEE (2009)

    Google Scholar 

  28. Poria, S., Cambria, E., Bajpai, R., Hussain, A.: A review of affective computing: from unimodal analysis to multimodal fusion. Inf. Fusion 37, 98–125 (2017)

    Article  Google Scholar 

  29. Pratt, W.K.: Digital Image Processing: PIKS Scientific Inside, vol. 4. Wiley Online Library (2007)

    Google Scholar 

  30. Shokrollahi, A., Persson, J.A., Malekian, R., Sarkheyli-Hägele, A., Karlsson, F.: Passive infrared sensor-based occupancy monitoring in smart buildings: a review of methodologies and machine learning approaches. Sensors 24(5), 1533 (2024)

    Article  Google Scholar 

  31. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  32. Wang, B.H., Yu, J., Wang, K., Bao, X.Y., Mao, K.M.: Fall detection based on dual-channel feature integration. IEEE Access 8, 103443–103453 (2020)

    Article  Google Scholar 

  33. Wang, K., Cao, G., Meng, D., Chen, W., Cao, W.: Automatic fall detection of human in video using combination of features. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1228–1233. IEEE (2016)

    Google Scholar 

  34. Wang, X., Ellul, J., Azzopardi, G.: Elderly fall detection systems: a literature survey. Front. Robot. AI 7, 71 (2020)

    Article  Google Scholar 

  35. Wang, Y., et al.: Multi-modal 3d object detection in autonomous driving: a survey. Int. J. Comput. Vision 131(8), 2122–2152 (2023)

    Article  Google Scholar 

  36. World Health Organization: Falls. https://www.who.int/news-room/fact-sheets/detail/falls (2024). [Accessed 04 June 2024]

  37. Youssfi Alaoui, A., Tabii, Y., Oulad Haj Thami, R., Daoudi, M., Berretti, S., Pala, P.: Fall detection of elderly people using the manifold of positive semidefinite matrices. J. Imaging 7(7), 109 (2021)

    Google Scholar 

  38. Yu, M., Gong, L., Kollias, S.: Computer vision based fall detection by a convolutional neural network. In: Proceedings of the 19th ACM international conference on multimodal interaction, pp. 416–420 (2017)

    Google Scholar 

  39. Zheng, H., et al.: Lightweight fall detection algorithm based on Alphapose optimization model and ST-GCN. Math. Probl. Eng. 2022 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahtab Jamali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jamali, M. et al. (2025). Video-Audio Multimodal Fall Detection Method. In: Hadfi, R., Anthony, P., Sharma, A., Ito, T., Bai, Q. (eds) PRICAI 2024: Trends in Artificial Intelligence. PRICAI 2024. Lecture Notes in Computer Science(), vol 15284. Springer, Singapore. https://doi.org/10.1007/978-981-96-0125-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0125-7_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0124-0

  • Online ISBN: 978-981-96-0125-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics