A Dynamic Load Distribution Method for Multi-Robot | SpringerLink
Skip to main content

A Dynamic Load Distribution Method for Multi-Robot

  • Conference paper
  • First Online:
Advanced Intelligent Technologies for Industry

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 285))

  • 935 Accesses

Abstract

To solve the problem of dynamic load distribution in multi-robotic grasping system, a load distribution method based on parameterized generalized grasping inverse matrix is proposed. Firstly, the kinematics and force analysis of the multi-robot grasping system is carried out, dividing the grasping force into external force and internal force; then, the dynamic manipulability of serial robot is quantified by using acceleration ellipsoid, based on which the load distribution coefficient is determined; the virtual mass and virtual inertia of the object and multi-robot system are defined, and the parameterized generalized grasping inverse matrix is established by combining the dynamic manipulability. It is proved that the proposed method can satisfy the load distribution mode without internal force. Simulation and experiments show that the proposed method can adjust the output of the wrench at the end effector of multi-robots, effectively avoiding the overload of the robot joints, and realize the dynamic load distribution of the multi-robotic grasping system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 25167
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 31459
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 31459
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Peng, Y.C., Carabis, D.S., Wen, J.T.: Collaborative manipulation with multiple dual-arm robots under human guidance. Int. J. Intell. Robot. Appl. 2(2), 252–266 (2018)

    Article  Google Scholar 

  2. Davide, O., Rajkumar, M., Alessandro, F., et al.: Dual-arm cooperative manipulation under joint limit constraints. Robot. Auton. Syst. 99, 110–120 (2018)

    Article  Google Scholar 

  3. Jia, W. J., Yang, G. L., Zhang, C.: Dynamic modeling with non-squeezing load distribution for omnidirectional mobile robots with powered caster wheels. 2018 13th IEEE Conference on Industrial Electronics and Applications, pp. 2327–2332. IEEE, USA (2018)

    Google Scholar 

  4. Korayem, M.H., Nekoo, R.S., Abbasi, E.: Dynamic load-carrying capacity of multi-arm cooperating wheeled mobile robots via optimal load distribution method. Arab. J. Sci. Eng. 39(08), 6421–6433 (2014)

    Article  Google Scholar 

  5. Tetsuyou, W., Tsuneo, Y.: Grasping optimization using a required external force Set. IEEE Trans. Autom. Sci. Eng. 04(01), 52–66 (2007)

    Article  Google Scholar 

  6. Walker, I.D., Freeman, R.A., Marcus, S.I.: Analysis of motion and internal loading of objects grasped by multiple cooperating manipulators. Int. J. Robot. Res. 10(04), 396–409 (1991)

    Article  Google Scholar 

  7. Koeda, M., Ito, T., Yoshikawa, T.: Shuffle turning in humanoid robots through load distribution control of the soles. Robotica 29(07), 1017–1024 (2011)

    Article  Google Scholar 

  8. Bonitz, R., Hsia, T.: Force decomposition in cooperating manipulators using the theory of metric spaces and generalized inverses. IEEE International Conference on Robotics and Automation, vol. 2, pp. 1521–1527.IEEE, USA (1994)

    Google Scholar 

  9. Chung, J., Yi, B.J., Kim, W.: Analysis of internal loading at multiple robotic systems. J. Mech. Sci. Technol. 19(8), 1554–1567 (2005)

    Article  Google Scholar 

  10. Erhart, S., Hirche, S.: Internal force analysis and load distribution for cooperative multi-robot manipulation. IEEE Trans. Rob. 31(5), 1238–1243 (2015)

    Article  Google Scholar 

  11. Bais, Z. A., Erhart, S., Zaccarian. L.: Dynamic loading distribution in cooperative manipulation tasks. IEEE/RSJ International Conference on Intelligent Robots & Systems, pp. 2380–2385. IEEE, USA (2015)

    Google Scholar 

  12. Zhao, Z.G., Lu, T.S.: Coordinated dynamic load distribution for multi-Robot collaborative towing system. Robot 34(1), 114–119 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Geng, L., Han, J., Jia, J., Li, J. (2022). A Dynamic Load Distribution Method for Multi-Robot. In: Nakamatsu, K., Kountchev, R., Patnaik, S., Abe, J.M., Tyugashev, A. (eds) Advanced Intelligent Technologies for Industry. Smart Innovation, Systems and Technologies, vol 285. Springer, Singapore. https://doi.org/10.1007/978-981-16-9735-7_45

Download citation

Publish with us

Policies and ethics