Abstract
The Cox point process is highly considered for earthquake modeling. However, the complex earthquake data which involve a large number of occurrences and geological variables often require expensive computation. This study aims to propose an efficient algorithm based on the two-step procedure by constructing the first and second order composite likelihoods. We consider four Neyman–Scott Cox process models and apply them to fit the earthquake distribution in Sumatra. We conclude that the Cauchy cluster process performs best.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ogata, Y.: Statistical models for earthquake occurrences and residual analysis for point processes. J. Am. Stat. Assoc. 83(401), 9–27 (1988)
Zhuang, J., Ogata, Y., Vere-Jones, D.: Stochastic declustering of space-time earthquake occurrences. J. Am. Stat. Assoc. 97(458), 369–380 (2002)
Türkyilmaz, K., van Lieshout, M.N.M., Stein, A.: Comparing the Hawkes and trigger process models for aftershock sequences following the 2005 Kashmir earthquake. Math. Geosci. 45(2), 149–164 (2013)
Choiruddin, A., Aisah, Trisnisa, F., Iriawan, N.: Quantifying the effect of geological factors on distribution of earthquake occurrences by inhomogeneous Cox processes. Pure Appl. Geophys. 178(5), 1579–1592 (2021)
Aisah, I.N., Choiruddin, A.: On the earthquake modeling by using Bayesian mixture Poisson process. Int. J. Adv. Sci. Technol. 29(7s), 3350–3358 (2020)
Mukhti, T.O., Choiruddin, A., Purhadi: Generalized additive Poisson models for quantifying geological factors effect on the earthquake risk mapping. J. Phys. Conf. Ser. 1863(1), p. 012030 (2021)
Siino, M., Adelfio, G., Mateu, J., Chiodi, M., D’Alessandro, A.: Spatial pattern analysis using hybrid models: an application to the Hellenic seismicity. Stoch. Environ. Res. Risk Assess 31(7), 1633–1648 (2016). https://doi.org/10.1007/s00477-016-1294-7
Møller, J., Waagepetersen, R.P.: Statistical Inference and Simulation for Spatial Point Processes. CRC Press (2003)
Møller, J., Waagepetersen, R.P.: Modern statistics for spatial point processes. Scand. J. Stat. 34(4), 643–684 (2007)
Waagepetersen, R.P., Guan, Y.: Two-step estimation for inhomogeneous spatial point processes. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 71(3), 685–702 (2009)
Guan, Y., Shen, Y.: A weighted estimating equation approach for inhomogeneous spatial point processes. Biometrika 97(4), 867–880 (2010)
Guan, Y.: A composite likelihood approach in fitting spatial point process models. J. Am. Stat. Assoc. 101(476), 1502–1512 (2006)
Natawidjaja, D.H.: Tectonic setting indonesia dan pemodelan sumber gempa dan tsunami. Geoteknologi-LIPI (2007)
Amri, M.R., et al.: Risiko bencana Indonesia. Badan Nasional Penanggulangan Bencana, Jakarta (2016)
Baddeley, A., Rubak, E., Turner, R.: Spatial Point Patterns: Methodology and Applications with R. CRC Press (2015)
Choiruddin, A., Coeurjolly, J.-F., Letué, F., et al.: Convex and non-convex regularization methods for spatial point processes intensity estimation. Electron. J. Stat. 12(1), 1210–1255 (2018)
Choiruddin, A., Coeurjolly, J.-F., Waagepetersen, R.P.: Information criteria for inhomogeneous spatial point processes. Aust. New Zealand J. Stat. 63(1), 119–143 (2021)
Jalilian, A., Guan, Y., Waagepetersen, R.P.: Decomposition of variance for spatial Cox processes. Scand. J. Stat. 40(1), 119–137 (2013)
Choiruddin, A., Coeurjolly, J.-F., Letué, F.: Adaptive lasso and Dantzig selector for spatial point processes intensity estimation. arXiv preprint arXiv:2101.03698 (2021)
Acknowledgements
The research is supported by Institut Teknologi Sepuluh Nopember grant number 1292/PKS/ITS/2021. We thank the two reviewers for the comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Choiruddin, A., Susanto, T.Y., Metrikasari, R. (2021). Two-Step Estimation for Modeling the Earthquake Occurrences in Sumatra by Neyman–Scott Cox Point Processes. In: Mohamed, A., Yap, B.W., Zain, J.M., Berry, M.W. (eds) Soft Computing in Data Science. SCDS 2021. Communications in Computer and Information Science, vol 1489. Springer, Singapore. https://doi.org/10.1007/978-981-16-7334-4_11
Download citation
DOI: https://doi.org/10.1007/978-981-16-7334-4_11
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-7333-7
Online ISBN: 978-981-16-7334-4
eBook Packages: Computer ScienceComputer Science (R0)