Anatomy of Networks Through Matrix Characteristics of Core/Periphery | SpringerLink
Skip to main content

Anatomy of Networks Through Matrix Characteristics of Core/Periphery

  • Conference paper
  • First Online:
Computer Supported Cooperative Work and Social Computing (ChineseCSCW 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1330))

  • 1171 Accesses

Abstract

In the traditional network structure analysis research, it mainly analyzes the characteristics of individuals in the network or the way of connection. However, these studies do not reflect the general phenomenon of social networks, for example, each organization usually includes individuals with different characteristics. Only by fully understanding the characteristics and the original hierarchical structure of the network, can we improve the network security and the management of the network. Therefore, we aim to analyze the overall characteristics of the network and dissect the relationship between the layers of various networks as well as the relationship between individuals in each layer without destroying the network structure. From a new point of view, the network is analyzed by using the characteristics of network matrix structure and some properties of core/periphery structure. We analyze several real networks and verifies the intensity of the core/periphery structure relationship in the network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 16015
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 20019
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)

    Article  MathSciNet  Google Scholar 

  2. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  3. Borgatti, S.P., Everett, M.G.: Models of core/periphery structures. Soc. Netw. 21(4), 375–395 (2000)

    Article  Google Scholar 

  4. Clauset, A., Moore, C., Newman, M.E.: Hierarchical structure and the prediction of missing links in networks. Nature 453(7191), 98–101 (2008)

    Article  Google Scholar 

  5. Diani, M., Wasserman, S., Faust, K.: Social Network Analysis: Methods And Applications, p. 825. Cambridge, Cambridge University Press (1994). Italian Political Science Review/Rivista Italiana di Scienza Politica 25(3), 582–584 (1995)

    Google Scholar 

  6. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  7. Goyal, S.: Connections: An Introduction to the Economics of Networks. Princeton University Press, Princeton (2012)

    Google Scholar 

  8. Haggerty, K.L., Griffith, J., McGuire, J., Molnar, B.: Elder mistreatment and social network composition: an exploratory study. Soc. Netw. 59, 23–30 (2019)

    Article  Google Scholar 

  9. Ingram, D.A., et al.: Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104(9), 2752–2760 (2004)

    Article  Google Scholar 

  10. Kovács, I.A., Palotai, R., Szalay, M.S., Csermely, P.: Community landscapes: an integrative approach to determine overlapping network module hierarchy, identify key nodes and predict network dynamics. PloS One 5(9), e12528 (2010)

    Article  Google Scholar 

  11. Krogan, N.J., et al.: Global landscape of protein complexes in the yeast saccharomyces cerevisiae. Nature 440(7084), 637–643 (2006)

    Article  Google Scholar 

  12. Lahav, N., Ksherim, B., Ben-Simon, E., Maron-Katz, A., Cohen, R., Havlin, S.: K-shell decomposition reveals hierarchical cortical organization of the human brain. New J. Phys. 18(8), 083013 (2016)

    Article  Google Scholar 

  13. Lewis, T.G.: Network Science: Theory and Applications. Wiley, Hoboken (2011)

    Google Scholar 

  14. Moskvina, A., Liu, J.: How to build your network? A structural analysis. arXiv preprint arXiv:1605.03644 (2016)

  15. Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  Google Scholar 

  16. Newman, M.E.: Complex systems: A survey. arXiv preprint arXiv:1112.1440 (2011)

  17. Rombach, M.P., Porter, M.A., Fowler, J.H., Mucha, P.J.: Core-periphery structure in networks. SIAM J. Appl. Math. 74(1), 167–190 (2014)

    Article  MathSciNet  Google Scholar 

  18. Saavedra, S., Malmgren, R.D., Switanek, N., Uzzi, B.: Foraging under conditions of short-term exploitative competition: the case of stock traders. Proc. R. Soc. B: Biol. Sci. 280(1755), 20122901 (2013)

    Article  Google Scholar 

  19. Schneider, C.M., Moreira, A.A., Andrade, J.S., Havlin, S., Herrmann, H.J.: Mitigation of malicious attacks on networks. Proc. Natl. Acad. Sci. 108(10), 3838–3841 (2011)

    Article  Google Scholar 

  20. Smilkov, D., Kocarev, L.: Rich-club and page-club coefficients for directed graphs. Phys. A 389(11), 2290–2299 (2010)

    Article  Google Scholar 

  21. Stanley, N., Shai, S., Taylor, D., Mucha, P.J.: Clustering network layers with the strata multilayer stochastic block model. IEEE Trans. Netw. Sci. Eng. 3(2), 95–105 (2016)

    Article  MathSciNet  Google Scholar 

  22. Yan, B., Liu, Y., Liu, J., Cai, Y., Su, H., Zheng, H.: From the periphery to the center: information brokerage in an evolving network. arXiv preprint arXiv:1805.00751 (2018)

  23. Zhang, F., Li, C., Zhang, Y., Qin, L., Zhang, W.: Finding critical users in social communities: the collapsed core and truss problems. IEEE Trans. Knowl. Data Eng. 32(1), 78–91 (2018)

    Article  Google Scholar 

  24. Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: Finding critical users for social network engagement: the collapsed k-core problem. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pp. 245–251 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, C., Chen, C., Chen, W. (2021). Anatomy of Networks Through Matrix Characteristics of Core/Periphery. In: Sun, Y., Liu, D., Liao, H., Fan, H., Gao, L. (eds) Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2020. Communications in Computer and Information Science, vol 1330. Springer, Singapore. https://doi.org/10.1007/978-981-16-2540-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2540-4_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2539-8

  • Online ISBN: 978-981-16-2540-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics