Impacts of Individuals’ Trust in Information Diffusion of the Weighted Multiplex Networks | SpringerLink
Skip to main content

Impacts of Individuals’ Trust in Information Diffusion of the Weighted Multiplex Networks

  • Conference paper
  • First Online:
Computer Supported Cooperative Work and Social Computing (ChineseCSCW 2020)

Abstract

In the recent years, information diffusion and strategy interaction on the multiplex networks have been greatly researched. Some significant progresses came at stochastic spreading models. However, the influences of individuals’ trust on strategy interaction and cooperation evolution were generally overlooked. Actually, in real social networks, the different trust levels of individuals are important factors in the information diffusion. Here, we will play some strategy games among individuals, as well as communities or groups in the weighted multiplex networks, to explore the effect of individuals’ trust on strategy interaction and cooperation evolution. Each individual uses a cache to storage certain length of previous strategy status, which indicates the individual’s trust degree on the strategy. When consecutive identical cooperation strategies occur in the individual’s cache, and exceed the certain threshold of strategy memory length, the cooperation strategy will be adopted in next interlayer and intralayer interactions, so as to explore community level diffusion. The results show that the individuals’ trust levels highly affect the strategy interaction and cooperation evolution in multiplex networks. The cache length of consecutive identical cooperation strategy is also the key parameter for information diffusion, and the tight degrees between different layers of networks together. This work will be helpful to understand cooperation dynamic and evolution in weighted multiplex networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 16015
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 20019
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010)

    Article  Google Scholar 

  2. Wang, Z., Wang, L., Szolnoki, A., Perc, M.: Evolutionary games on multilayer networks: a colloquium. Eur. Phys. J. B 88, 124 (2015)

    Article  Google Scholar 

  3. Liu, X., Stanley, H.E., Gao, J.: Breakdown of interdependent directed networks. Proc. Natl. Acad. Sci. USA 113(5), 1138–1143 (2016)

    Google Scholar 

  4. Santos, M.D., Dorogovtsev, S.N., Mendes, J.F.F.: Biased imitation in coupled evolutionary games in interdependent networks. Sci. Rep. 4, 4436 (2014)

    Article  Google Scholar 

  5. Marialisa, S., et al.: Combining evolutionary game theory and network theory to analyze human cooperation patterns. Chaos Solitons Fractals 91, 17–24 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Wang, Z., Szolnoki, A., Perc, M.: Optimal interdependence between networks for the evolution of cooperation. Sci. Rep. 3, 2470 (2013)

    Article  Google Scholar 

  7. Lugo, H., San Miguel, M.: Learning and coordinating in a multilayer network. Sci. Rep. 5, 7776 (2015)

    Google Scholar 

  8. Matamalas, J.T., Poncela-Casasnovas, J., Gómez, S., Arenas, A.: Strategical incoherence regulates cooperation in social dilemmas on multiplex networks. Sci. Rep. 5, 9519 (2015)

    Google Scholar 

  9. Luo, C., Zhang, X., Liu, H., Shao, R.: Cooperation in memory-based prisoner’s dilemma game on interdependent networks. Physica A 450, 560–569 (2016)

    Article  Google Scholar 

  10. Huang, K., et al.: Understanding cooperative behavior based on the coevolution of game strategy and link weight. Sci. Rep. 5, 14783 (2015)

    Article  Google Scholar 

  11. Centola, D.: The spread of behavior in an online social network experiment. Science 329, 1194–1196 (2010)

    Article  Google Scholar 

  12. Santos, F.C., Pacheco, J.M.: Tom Lenaerts: evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proc. Natl. Acad. Sci. USA 103(9), 3490–3494 (2006)

    Article  Google Scholar 

  13. Watts, D.J.: A simple model of global cascades on random networks. Proc. Natl. Acad. Sci. USA 99(9), 5766–5771 (2002)

    Article  MathSciNet  Google Scholar 

  14. Weng, L., Menczer, F., Ahn, Y.-Y.: Virality prediction and community structure in social networks. Sci. Rep. 3, 2522 (2013)

    Article  Google Scholar 

  15. Li, W., Tang, S., Fang, W., et al.: How multiple social networks affect user awareness: the information diffusion process in multiplex networks. Phys. Rev. E 92, 042810 (2019)

    Article  Google Scholar 

  16. Wang, W., Liu, Q.H., Cai, S.M., et al.: Suppressing disease spreading by using information diffusion on multiplex networks. Sci. Rep. 6, 29259 (2016)

    Article  Google Scholar 

  17. Wang, Z., Wang, L., Perc, M.: Degree mixing in multilayer networks impedes the evolution of cooperation. Phys. Rev. E 89(5), 052813 (2014)

    Google Scholar 

  18. Zhao, D., Wang, L., Li, S., Wang, Z., Wang, L., et al.: Immunization of epidemics in multiplex networks. PLoS ONE 9(11), e112018 (2018)

    Google Scholar 

  19. Liu, T., Li, P., Chen, Y., Zhang, J.: Community size effects on epidemic spreading in multiplex social networks. PLoS ONE 11(3), e0152021 (2016)

    Google Scholar 

  20. Emily, T.: Diffusion of innovations on community based Small Worlds: the role of correlation between social spheres. In: 15th Coalition Theory Network Workshop, Marseille, France (2010)

    Google Scholar 

  21. Rasoul, R., Mostafa, S., et al.: Diffusion of innovations over multiplex social networks. In: The International Symposium on Artificial Intelligence and Signal Processing (AISP), pp. 300–304. IEEE (2018)

    Google Scholar 

  22. Liu, Q.H., et al.: Impacts of complex behavioral responses on asymmetric interacting spreading dynamics in multiplex networks. Sci. Rep. 6, 25617 (2016)

    Article  Google Scholar 

  23. Johan, U., Lars, B., Cameron, M., Jon, K.: Structural diversity in social contagion. Proc. Natl. Acad. Sci. USA 109(16), 5962–5966 (2012)

    Article  Google Scholar 

  24. Michela, D.V., et al.: The spreading of misinformation online. Proc. Natl. Acad. Sci. USA 113(3), 554–559 (2016)

    Google Scholar 

  25. Azimi-Tafreshi, N.: Cooperative epidemics on multiplex networks. Phys. Rev. E 93(4), 042303 (2016)

    Google Scholar 

  26. Gabriel, E.K., Young, H.P.: Rapid innovation diffusion in social networks. Proc. Natl. Acad. Sci. USA 111(3), 10881–10888 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Kimura, M., Yamakawa, K., Saito, K., et al.: Community analysis of influential nodes for information diffusion on a social network. In: IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence),pp. 1358–1363. IEEE (2018)

    Google Scholar 

  28. Zang, W., Zhang, P., Zhou, C., Guo, L.: Discovering multiple diffusion source nodes in social networks. Procedia Comput. Sci. 29, 443–452 (2014)

    Article  Google Scholar 

  29. Szolnoki, A., Perc, M.: Leaders should not be conformists in evolutionary social dilemmas. Sci. Rep 6, 23633 (2016)

    Article  Google Scholar 

  30. Maksim, K., et al.: Identification of influential spreaders in complex networks. Nat. Phys. 6, 888–893 (2010)

    Google Scholar 

  31. Yu, J., Jiang, J.C., Xiang, L.: Group-based strategy diffusion in multiplex networks with weighted values. Physica A: Stat. Mech. Appl. 469, 148–156 (2017)

    Google Scholar 

  32. Axelrod, R., Hamilton, W.D.: The evolution of cooperation. Science 211, 1390–1396 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by The National Social Science Fund of China (No. 20BXW096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyong Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, J., Luo, J., Li, P. (2021). Impacts of Individuals’ Trust in Information Diffusion of the Weighted Multiplex Networks. In: Sun, Y., Liu, D., Liao, H., Fan, H., Gao, L. (eds) Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2020. Communications in Computer and Information Science, vol 1330. Springer, Singapore. https://doi.org/10.1007/978-981-16-2540-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-2540-4_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-2539-8

  • Online ISBN: 978-981-16-2540-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics