Perceptron Circuit Design of Second Order Damped System Based on Memristor | SpringerLink
Skip to main content

Perceptron Circuit Design of Second Order Damped System Based on Memristor

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1363))

  • 737 Accesses

Abstract

The development of traditional CMOS-based logic circuits in terms of speed and energy consumption is approaching the limit. Memristor is a kind of bio-inspired hardware with a special structure, which has the advantages of simple structure, low power consumption and easy integration. It has good application prospects in high performance memory and neural network. The invention of memristor provides a new way to develop a more efficient circuit design. In this paper, the second order damping system based on memristor is used to realize the function of human body perceptron. By taking advantage of the variable resistance of memristors, the function of real-time perception can be realized. The second order underdamped state itself is used to realize the sensory adaptation ability of perceptrons. Through theoretical analysis and Pspice simulation, the feasibility of the second order damped system perceptron based on memristor is verified. The human body sensor based on memristor provides a reference for more future intelligent robots. It also provides support for the development and application of bio-inspired hardware.

This work was supported in part by the National Key Research and Development Program of China for International S and T Cooperation Projects under Grant 2017YFE0103900, in part by the Joint Funds of the National Natural Science Foundation of China under Grant U1804262, in part by the State Key Program of National Natural Science of China under Grant 61632002, in part by the Foundation of Young Key Teachers from University of Henan Province under Grant 2018GGJS092, in part by the Youth Talent Lifting Project of Henan Province under Grant 2018HYTP016, in part by the Henan Province University Science and Technology Innovation Talent Support Plan under Grant 20HASTIT027, in part by the Zhongyuan Thousand Talents Program under Grant 204200510003.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jin, X., Su, T., Kong, J., Bai, Y., Miao, B., Dou, C.: State-of-the-art mobile intelligence. Enabling robots to move like humans by estimating mobility with artificial intelligence. Appl. Sci. 8(3), 1–39 (2018). Article no. 379

    Article  Google Scholar 

  2. Cui, C., Bian, G., Hou, Z., Zhao, J., Zhou, H.: A multimodal framework based on integration of cortical and muscular activities for decoding human intentions about lower limb motions. IEEE Trans. Biomed. Circuits Syst. 11(4), 889–899 (2017)

    Article  Google Scholar 

  3. Rasouli, M., Chen, Y., Basu, A., Kukreja, S.L., Thakor, N.V.: An extreme learning machine-based neuromorphic tactile sensing system for texture recognition. IEEE Trans. Biomed. Circuits Syst. 99(12), 313–325 (2018)

    Article  Google Scholar 

  4. Navaraj, W.T., Nunez, C.G., Shakthivel, D., Vinciguerra, V., Labeau, F., Gregory, D.H., Dahiya, R.: Nanowire FET based neural element for robotic tactile sensing skin. Front. NeuroSci. 11, 501 (2017)

    Article  Google Scholar 

  5. Kawasaki, H., Mouri, T.: Humanoid robot hand and its applied research. J. Robot. Mechatron. 31(1), 16–26 (2019)

    Article  Google Scholar 

  6. Pflug, G.: Book review: the oxford dictionary of statistical terms. Biom. J. 46(2), 284 (2004)

    Article  Google Scholar 

  7. Sebrechts, M.M.: The Psychology of Human-Computer Interaction (Book). Erlbaum Associates Inc., New Jersey (1983). American Entist

    Google Scholar 

  8. Bills, A.G.: Sensation and perception in the history of experimental psychology. Psychol. Bull. 40(3), 222–225 (1943)

    Article  Google Scholar 

  9. APAFreeman, R.B.: The senses considered as perceptual systems. Q. Rev. Biol. 1, 8–9 (1969)

    Google Scholar 

  10. Belkaid, M., Cuperlier, N., Gaussier, P.: Emotional modulation of peripersonal space as a way to represent reachable and comfort areas. In: Intelligent Robots and Systems, pp. 353–359 (2015)

    Google Scholar 

  11. Ramirezamaro, K., Beetz, M., Cheng, G.: Understanding the intention of human activities through semantic perception: observation, understanding and execution on a humanoid robot. Adv. Robot. 29(5), 345–362 (2015)

    Article  Google Scholar 

  12. Chao, L., Tao, J., Yang, M., Li, Y., Wen, Z.: Audio Visual Emotion Recognition with Temporal Alignment and Perception Attention (2016). \({\rm arXiv {: }~Computer~Vision~and~Pattern~Recognition}\)

    Google Scholar 

  13. Goldstein, B.E., Brockmole, J.: Sensation and Perception. Cengage Learning, Boston (2016)

    Google Scholar 

  14. Duan, S.K., Hu, X.F., Wang, L.D., Li, C.D.: Analog memristive memory with applications in audio signal processing. Sci. China Inform. Sci. 57(4), 1–15 (2013). https://doi.org/10.1007/s11432-013-4864-z

    Article  Google Scholar 

  15. Kaboli, M., Cheng, G.: Robust tactile descriptors for discriminating objects from textural properties via artificial robotic skin. IEEE Trans. Robot. 34(4), 985–1003 (2018)

    Article  Google Scholar 

  16. Gupta, S., Yogeswaran, N., Giacomozzi, F., Lorenzelli, L., Dahiya, R.: Flexible AlN coupled MOSFET device for touch sensing. In: IEEE SENSORS (2018)

    Google Scholar 

  17. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  18. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  19. Li, C., Hu, M., Li, Y., Jiang, H., Xia, Q.: Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1(1), 52–59 (2018)

    Article  Google Scholar 

  20. Lehtonen, E., Laiho, M.: Stateful implication logic with memristors. In: IEEE/ACM International Symposium on Nanoscale Architectures, pp. 33–36 (2009)

    Google Scholar 

  21. Xia, Q., et al.: Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9(10), 3640–3645 (2009)

    Article  Google Scholar 

  22. Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.: ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464(7290), 873–876 (2010)

    Article  Google Scholar 

  23. Kvatinsky, S., Wald, N., Satat, G., Kolodny, A., Friedman, E.G.: MRL-memristor ratioed logic. In: International Workshop on Cellular Nanoscale Networks and Their Applications, IEEE (2012)

    Google Scholar 

  24. Guckert, L., Swartzlander, E.E.: MAD gates-memristor logic design using driver circuitry. IEEE Trans. Circuits Syst. II Express Briefs 64(2), 171–175 (2017)

    Article  Google Scholar 

  25. Kim, K., Williams, R.S.: A family of stateful memristor gates for complete cascading logic. IEEE Trans.Circuits Syst. 66(11), 4348–4355 (2019)

    Article  MathSciNet  Google Scholar 

  26. Papandroulidakis, G., Serb, A., Khiat, A., Merrett, G.V., Prodromakis, T.: Practical implementation of memristor-based threshold logic gates. IEEE Trans. Circuits Syst. 66(8), 3041–3051 (2019)

    Article  Google Scholar 

  27. Muthuswamy, B.: Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos Syst. 20(05), 1335–1350 (2010)

    Article  Google Scholar 

  28. Sun, J., Zhao, X., Fang, J., Wang, Y.: Autonomous memristor chaotic systems of infinite chaotic attractors and circuitry realization. Nonlinear Dyn. 94(4), 2879–2887 (2018). https://doi.org/10.1007/s11071-018-4531-4

    Article  Google Scholar 

  29. Sun, J., Han, G., Wang, Y., Zhang, H., Wu, L.: Hybrid memristor chaotic system. J. Nanoelectron. Optoelectron. 13(6), 812–818 (2018)

    Article  Google Scholar 

  30. Xu, C., Dong, X., Jouppi, N. P., Xie, Y.: Design implications of memristor-based RRAM cross-point structures. In: 2011 Design, Automation and Test in Europe, pp. 1–6 (2011)

    Google Scholar 

  31. Ebong, I., Mazumder, P.: Self-controlled writing and erasing in a memristor crossbar memory. IEEE Trans. Nanotechnol. 10(6), 1454–1463 (2011)

    Article  Google Scholar 

  32. Shaarawy, N., et al.: Design and analysis of 2T2M hybrid CMOS-Memristor based RRAM. Microelectron. J. 73, 75–85 (2018)

    Article  Google Scholar 

  33. Dubey, S.K., Reddy, A., Patel, R., Abz, M., Srinivasulu, A., Islam, A.: Architecture of resistive RAM with write driver. Solid State Electron. Lett. 2, 10–22 (2020)

    Article  Google Scholar 

  34. Yan, X., Zhao, J., Liu, S., Zhou, Z., Liu, Q., Chen, J.S., Liu, X.: Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing. Adv. Funct. Mater. 28(1), 1705320 (2018)

    Article  Google Scholar 

  35. Yoon, J.H., et al.: A low-current and analog Memristor with Ru as mobile species. Adv. Mater. 32(9), 1904599 (2020)

    Article  Google Scholar 

  36. Zhou, L., et al.: Tunable synaptic behavior realized in C3N composite based memristor. Nano Energy 58, 293–303 (2019)

    Article  Google Scholar 

  37. Kvatinsky, S., Friedman, E.G., Kolodny, A., Weiser, U.C.: TEAM: threshold adaptive memristor model. IEEE Trans. Circuits Syst. 60(1), 211–221 (2013)

    Article  MathSciNet  Google Scholar 

  38. Biolek, D., Biolkova, V., Biolek, Z.: SPICE model of memristor with nonlinear dopant drift. Radioengineering 18(2), 210–214 (2009)

    MATH  Google Scholar 

  39. Xu, F., Zhang, J.Q., Huang, S.F., Zhang, J.S., Xie, S.Q., Wang, M.S.: A new nonlinear dopant kinetic model of memristor and its application. Indian Journal of Physics 93(6), 765–772 (2018). https://doi.org/10.1007/s12648-018-1330-1

    Article  Google Scholar 

  40. Rziga, F.O., Mbarek, K., Ghedira, S., Besbes, K.: An efficient Verilog-A memristor model implementation: simulation and application. J. Comput. Electron. 18(3), 1055–1064 (2019). https://doi.org/10.1007/s10825-019-01357-9

    Article  Google Scholar 

  41. Nigus, M., Priyadarshini, R., Mehra, R.M.: Stochastic and novel generic scalable window function-based deterministic memristor SPICE model comparison and implementation for synaptic circuit design. SN Appl. Sci. 2(1), 1–20 (2019). https://doi.org/10.1007/s42452-019-1888-z

    Article  Google Scholar 

  42. Zhang, Y., Wang, X., Li, Y., Friedman, E.G.: Memristive model for synaptic circuits. IEEE Trans. Circuits Syst. II-Express Briefs 64(7), 767–771 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwei Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, X., Han, J., Chen, X., Sun, J. (2021). Perceptron Circuit Design of Second Order Damped System Based on Memristor. In: Pan, L., Pang, S., Song, T., Gong, F. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2020. Communications in Computer and Information Science, vol 1363. Springer, Singapore. https://doi.org/10.1007/978-981-16-1354-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1354-8_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1353-1

  • Online ISBN: 978-981-16-1354-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics