Digital Watermarking for Enriched Video Streams in Edge Computing Architectures Using Chaotic Mixtures and Physical Unclonable Functions | SpringerLink
Skip to main content

Digital Watermarking for Enriched Video Streams in Edge Computing Architectures Using Chaotic Mixtures and Physical Unclonable Functions

  • Conference paper
  • First Online:
Mobile Internet Security (MobiSec 2019)

Abstract

Authentication in advanced video applications is a pending challenge, especially in those scenarios where video streams are enriched with additional information from sensors and other similar devices. Traditional solutions require remote devices (such as cameras) to store private keys, a situation that has been proved to be very risky. On the other hand, standard authentication methods, such as digital signatures or secure sessions, prevent systems to operate at real-time, as they are very computationally costly operations which, besides, are designed to work with information blocks, not with streams. Other solutions, furthermore, require the integration of gateways or aggregation points in video infrastructures, which creates bottlenecks and difficulties the dynamic adaptation of systems to the environmental conditions and devices’ lifecycle. Therefore, in this paper, we address this problem by proposing an authentication procedure based on digital watermarking. In our proposal, video infrastructures are organized as edge computing architectures, where enriched video streams are protected by watermarks and devices may delegate functionalities dynamically. This new watermarking technology is based on chaotic mixtures and secret keys provided by Physical Unclonable Functions. In order to evaluate the performance of the proposed solution an experimental validation is also carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alcarria, R., Bordel, B., Manso, M.Á., Iturrioz, T., Pérez, M.: Analyzing UAV-based remote sensing and WSN support for data fusion. In: Rocha, Á., Guarda, T. (eds.) ICITS 2018. AISC, vol. 721, pp. 756–766. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73450-7_71

    Chapter  Google Scholar 

  2. Atrey, P.K., Yan, W.Q., Kankanhalli, M.S.: A scalable signature scheme for video authentication. Multimed. Tools Appl. 34(1), 107–135 (2007). https://doi.org/10.1007/s11042-006-0074-7

    Article  Google Scholar 

  3. Bartolini, F., Tefas, A., Barni, M., Pitas, I.: Image authentication techniques for surveillance applications. Proc. IEEE 89(10), 1403–1418 (2001). https://doi.org/10.1109/5.959338

    Article  Google Scholar 

  4. Billinghurst, M., Clark, A., Lee, G.: A survey of augmented reality. Found. Trends® Hum. Comput. Interact. 8(2–3), 73–272 (2015). https://doi.org/10.1561/1100000049

  5. Bordel, B., Alcarria, R.: Physical unclonable functions based on silicon micro-ring resonators for secure signature delegation in wireless sensor networks. J. Internet Serv. Inf. Secur. (JISIS) 8(3), 40–53 (2018)

    Google Scholar 

  6. Bordel, B., Alcarria, R., Ángel Manso, M., Jara, A.: Building enhanced environmental traceability solutions: from thing-to-thing communications to generalized cyber-physical systems. J. Internet Serv. Inf. Secur. (JISIS)(JISIS) 7(3), 17–33 (2017)

    Google Scholar 

  7. Bordel, B., Alcarria, R., de Rivera, D.S., Martín, D., Robles, T.: Fast self-configuration in service-oriented smart environments for real-time applications. JAISE 10(2), 143–167 (2018). https://doi.org/10.3233/AIS-180479

    Article  Google Scholar 

  8. Chen, S., Leung, H.: Chaotic watermarking for video authentication in surveillance applications. IEEE Trans. Circuits Syst. Video Technol. 18(5), 704–709 (2008). https://doi.org/10.1109/TCSVT.2008.918801

    Article  Google Scholar 

  9. Chetty, G., Wagner, M.: Liveness verification in audio-video speaker authentication. In: Cassidy, S., Cox, F., Mannwell, R., Palethorpe, S. (eds.) Proceedings of the 10th Australian Conference on Speech, Science and Technology, pp. 358–363. Australian Speech Science and Technology Association (ASSTA) (2004)

    Google Scholar 

  10. Cross, D., Mobasseri, B.G.: Watermarking for self-authentication of compressed video. In: Proceedings of International Conference on Image Processing, vol. 2, pp. II-II, September 2002. https://doi.org/10.1109/ICIP.2002.1040100

  11. Dittmann, J., Mukherjee, A., Steinebach, M.: Media-independent watermarking classification and the need for combining digital video and audio watermarking for media authentication. In: Proceedings International Conference on Information Technology: Coding and Computing (Cat. No.PR00540), pp. 62–67, March 2000. https://doi.org/10.1109/ITCC.2000.844184

  12. Dittmann, J., Steinmetz, A., Steinmetz, R.: Content-based digital signature for motion pictures authentication and content-fragile watermarking. In: Proceedings IEEE International Conference on Multimedia Computing and Systems, vol. 2, pp. 209–213, June 1999. https://doi.org/10.1109/MMCS.1999.778274

  13. Duc, B., Bigün, E.S., Bigün, J., Maître, G., Fischer, S.: Fusion of audio and video information for multi modal person authentication. Pattern Recogn. Lett. 18(9), 835–843 (1997). https://doi.org/10.1016/S0167-8655(97)00071-8

  14. Fadl, S.M., Han, Q., Li, Q.: Authentication of surveillance videos: detectingframe duplication based on residual frame. J. Forensic Sci. 63(4), 1099–1109 (2018). https://doi.org/10.1111/1556-4029.13658

  15. Grigoras, C.: Applications of ENF analysis in forensic authentication of digital audio and video recordings. J. Audio Eng. Soc. 57(9), 643–661 (2009). http://www.aes.org/e-lib/browse.cfm?elib=14835

  16. Gritti, C., Önen, M., Molva, R., Susilo, W., Plantard, T.: Device identification and personal data attestation in networks. J. Wirel. Mob. Netw. Ubiquit. Comput. Dependable Appl. 9(4), 1–25 (2018). https://doi.org/10.22667/JOWUA.2018.12.31.001

  17. Gusev, P.D., Borzunov, G.I.: The analysis of modern methods for video authentication. Procedia Comput. Sci. 123, 161 – 164 (2018). https://doi.org/10.1016/j.procs.2018.01.026. 8th Annual International Conference on Biologically Inspired Cognitive Architectures, BICA 2017 (Eighth Annual Meeting of the BICA Society), held August 1-6, 2017 in Moscow, Russia

  18. Kunkelmann, T.: Applying encryption to video communication. In: Proceedings of the Multimedia and Security Workshop at ACM Multimedia (1998)

    Google Scholar 

  19. Liu, J., Ke, Y., Kao, Y., Tsai, S., Lin, Y.: A dual-stack authentication mechanism through SNMP. J. Wirel. Mob. Netw. Ubiquit. Comput. Dependable Appl. 10(4), 31–45 (2019). https://doi.org/10.22667/JOWUA.2019.12.31.031

  20. Lugiez, M., Ménard, M., El-Hamidi, A.: Dynamic color texture modeling and color video decomposition using bounded variation and oscillatory functions. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008. LNCS, vol. 5099, pp. 29–37. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69905-7_4

    Chapter  Google Scholar 

  21. Mareca, M.P., Bordel, B.: Improving the complexity of the Lorenz dynamics. In: Complexity 2017, pp. 1–16, January 2017. https://doi.org/10.1155/2017/3204073

  22. Mobasseri, B.G., Sieffert, M.J., Simard, R.J.: Content authentication and tamper detection in digital video. In: Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101), vol. 1, pp. 458–461, September 2000. https://doi.org/10.1109/ICIP.2000.900994

  23. Nimbalkar, A.B., Desai, C.G.: Digital signature schemes based on two hard problems. In: Detecting and Mitigating Robotic Cyber Security Risks, pp. 98–125 (2017)

    Google Scholar 

  24. Pérez-Jiménez, M., Sánchez, B., Migliorini, A., Alcarria, R.: Protecting private communications in cyber-physical systems through physical unclonable functions. Electronics 8(4), 390 (2019). https://doi.org/10.3390/electronics8040390

    Article  Google Scholar 

  25. Roy, S.D., Li, X., Shoshan, Y., Fish, A., Yadid-Pecht, O.: Hardware implementation of a digital watermarking system for video authentication. IEEE Trans. Circuits Syst. Video Technol. 23(2), 289–301 (2013). https://doi.org/10.1109/TCSVT.2012.2203738

    Article  Google Scholar 

  26. Sajjad, M., et al.: CNN-based anti-spoofing two-tier multi-factor authentication system. Pattern Recogn. Lett. (2018). https://doi.org/10.1016/j.patrec.2018.02.015

    Article  Google Scholar 

  27. Schneider, M., Chang, S.-F.: A robust content based digital signature for image authentication. In: Proceedings of 3rd IEEE International Conference on Image Processing, vol. 3, pp. 227–230, September 1996. https://doi.org/10.1109/ICIP.1996.560425

  28. Singh, R.D., Aggarwal, N.: Video content authentication techniques: a comprehensive survey. Multimed. Syst. 24(2), 211–240 (2017). https://doi.org/10.1007/s00530-017-0538-9

    Article  Google Scholar 

  29. Sun, Q., He, D., Tian, Q.: A secure and robust authentication scheme for video transcoding. IEEE Trans. Circuits Syst. Video Technol. 16(10), 1232–1244 (2006). https://doi.org/10.1109/TCSVT.2006.882540

    Article  Google Scholar 

  30. Vidhya, R., Brindha, M.: A novel dynamic key based chaotic image encryption. J. Internet Serv. Inf. Secur. 8(1), 46–55 (2018). https://doi.org/10.22667/JISIS.2018.02.28.046

  31. Xu, D., Wang, R., Wang, J.: A novel watermarking scheme for H.264/AVC video authentication. Image Commun. 26(6), 267–279 (2011). https://doi.org/10.1016/j.image.2011.04.008

  32. Yin, P., Yu, H.H.: A semi-fragile watermarking system for mpeg video authentication. In: 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. IV-3461–IV-3464, May 2002. https://doi.org/10.1109/ICASSP.2002.5745399

Download references

Acknowledgments

The research leading to these results has received funding by the Ministry of Science, Innovation and Universities through the COGNOS (PID2019-105484RB-I00) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borja Bordel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bordel, B., Alcarria, R. (2020). Digital Watermarking for Enriched Video Streams in Edge Computing Architectures Using Chaotic Mixtures and Physical Unclonable Functions. In: You, I., Chen, HC., Leu, FY., Kotenko, I. (eds) Mobile Internet Security. MobiSec 2019. Communications in Computer and Information Science, vol 1121. Springer, Singapore. https://doi.org/10.1007/978-981-15-9609-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9609-4_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9608-7

  • Online ISBN: 978-981-15-9609-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics