Abstract
Chest X-ray (CXR) is the most popular imaging modality used for preliminary diagnosis of pulmonary diseases. In automatic computer-aided diagnosis (CAD), the number of false-positive cases can be reduced by segmenting out the normal anatomical structures. Demarcating lung parenchyma on CXR image is challenging due to complex anatomical structures of the human thoracic cavity. The extracted lungs boundary suffers from undesirable artifacts such as ridges and pits. This paper presents an algorithm to adaptively scan the inner lung boundary to correct the undesirable artifacts. Further, the algorithm is context-aware, it takes care of normal cavity due to the aortic knuckle and diaphragm borders. The algorithm is tested on 138 binary lung mask extracted from digital CXR images from Montgomery dataset. The quantitative, qualitative, statistical results reveal that the proposed algorithm outperforms the existing method. The average increase in segmentation accuracy is 2.561%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agnihotri D, Verma K, Tripathi P (2017) Variable global feature selection scheme for automatic classification of text documents. Expert Syst Appl 81:268–281
Annangi P, Thiruvenkadam S, Raja A, Xu H, Sun XSX, Mao LML (2010) A region based active contour method for x-ray lung segmentation using prior shape and low level features. In: 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp 892–895
Armato III SG, Giger ML, MacMahon H (1998) Computerized delineation and analysis of costophrenic angles in digital chest radiographs. Acad Radiol 5(5):329–335. https://doi.org/10.1016/S1076-6332(98)80151-7
Armato III SG, Giger ML, MacMahon H (2004) Method and system for the automated delineation of lung regions and costophrenic angles in chest radiographs
Candemir S, Jaeger S, Palaniappan K, Antani S, Thoma G (2012) Graph cut based automatic lung boundary detection in chest radiographs. In: IEEE healthcare technology cconference: translational engineering in health and medicine, pp 31–34
Candemir S, Jaeger S, Palaniappan K, Musco JP, Singh RK, Xue Z, Karargyris A, Antani S, Thoma G, McDonald CJ (2014) Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration. IEEE Trans Med Imaging 33:577–590
Chandra TB, Verma K (2020) Pneumonia detection on chest X-Ray using machine learning paradigm. In: Proceedings of 3rd international conference on computer vision and image processing. Springer, Singapore, pp 21–33. https://doi.org/10.1007/978-981-32-9088-4_3
Chondro P, Yao CY, Ruan SJ, Chien LC (2018) Low order adaptive region growing for lung segmentation on plain chest radiographs. Neurocomputing. 275:1002–1011
Cootes TF, Taylor CJ (2004) Statistical models of appearance for computer vision. Available on: https://www.face-rec.org/Algorithms/AAM/app_models.pdf. Accessed 24 July 2020
Dallal AH, Agarwal C, Arbabshirani MR, Patel A, Moore G (2017) Automatic estimation of heart boundaries and cardiothoracic ratio from chest x-ray images. In: Medical imaging 2017: computer-aided diagnosis, p 101340K
Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302
Hasan MA, Lee S-L, Kim D-H, Lim M-K (2012) Automatic evaluation of cardiac hypertrophy using cardiothoracic area ratio in chest radiograph images. Comput Methods Programs Biomed 105:95–108
Jaeger S, Karargyris A, Antani S, Thoma G (2012) Detecting tuberculosis in radiographs using combined lung masks. In: 2012 Annual international conference of the IEEE on engineering in medicine and biology society (EMBC), pp 4978–4981
Jaeger S, Karargyris A, Candemir S, Folio L, Siegelman J, Callaghan FM, Xue Z, Palaniappan K, Singh RK, Antani SK et al (2014) Automatic tuberculosis screening using chest radiographs. IEEE Trans Med Imaging 33:233–245
Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1:321–331
Liang J, Jiang H, Ma L, Liu Y, Toshiya N (2017) A new boundary correction method for lung parenchyma. In: Eighth international conference on graphic and image processing (ICGIP 2016), vol 10225. International Society for Optics and Photonics, p 1022529. https://doi.org/10.1117/12.2266086
Maduskar P, Hogeweg L, Philipsen R, van Ginneken B (2013) Automated localization of costophrenic recesses and costophrenic angle measurement on frontal chest radiographs. In: Medical imaging 2013: computer-aided diagnosis, vol 8670. International Society for Optics and Photonics, p 867038. https://doi.org/10.1117/12.2008239
Panigrahi L, Verma K, Singh BK (2019) Ultrasound image segmentation using a novel multi-scale Gaussian kernel fuzzy clustering and multi-scale vector field convolution. Expert Syst Appl 115:486–498
Pu J, Roos J, Yi CA, Napel S, Rubin GD, Paik DS (2008) Adaptive border marching algorithm: Automatic lung segmentation on chest CT images. Comput Med Imaging Graph 32:452–462
Sezaki N, Ukena K (1973) Automatic computation of the cardiothoracic ratio with application to mass screening. IEEE Trans Biomed Eng:248–253
Shi Y, Qi F, Xue Z, Ito K, Matsuo H, Shen D (2006) Segmenting lung fields in serial chest radiographs using both population and patient-specific shape statistics. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, Heidelberg, pp 83–91. https://doi.org/10.1007/11866565_11
Singadkar G, Mahajan A, Thakur M, Talbar S (2018) Automatic lung segmentation for the inclusion of juxtapleural nodules and pulmonary vessels using curvature based border correction. J King Saud Univ - Comput Inf Sci
Van Ginneken B, Ter Haar Romeny BM, Viergever MA (2001) Computer-aided diagnosis in chest radiography: a survey. IEEE Trans Med Imaging 20:1228–1241
Yang W, Liu Y, Lin L, Yun Z, Lu Z, Feng Q, Chen W (2018) Lung field segmentation in chest radiographs from boundary maps by a structured edge detector. IEEE J Biomed Heal Inform 22:842–851
Yim Y, Hong H (2008) Correction of segmented lung boundary for inclusion of pleural nodules and pulmonary vessels in chest CT images. Comput Biol Med 38:845–857
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Chandra, T.B., Verma, K., Jain, D., Netam, S.S. (2021). Segmented Lung Boundary Correction in Chest Radiograph Using Context-Aware Adaptive Scan Algorithm. In: Rizvanov, A.A., Singh, B.K., Ganasala, P. (eds) Advances in Biomedical Engineering and Technology. Lecture Notes in Bioengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-6329-4_23
Download citation
DOI: https://doi.org/10.1007/978-981-15-6329-4_23
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-6328-7
Online ISBN: 978-981-15-6329-4
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)