Abstract
Feature extraction is a key step and plays a deciding role for the performance of an image retrieval system. Success of a Content Based Image Retrieval System depends on the used features of the image. This paper includes a wide-range of survey on the various feature extraction process and their impact on the working behavior of an image retrieval system. This impact is calculated on the basis of retrieval accuracy, retrieval time, space complexity and feature extraction time. Comprehensive survey on the recent trends and challenges to the retrieval system has also been discussed. Furthermore, directions and suggestions, based on the real world applications are also suggested for encouraging the researchers in the area of image processing for adopting the optimized feature extraction process. This survey also tries to fill the gap between the traditional approaches and recent trends of feature extraction. More importantly, this paper also surveyed the issues with the feature extraction techniques in spatial as well as spectral domain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Dubey, S.R., Singh, S.K., Singh, R.K.: Rotation and scale invariant hybrid image descriptor and retrieval. Comput. Electr. Eng. 46, 288–302 (2015)
Fadaei, S., Amirfattahi, R., Ahmadzadeh, M.R.: New content-based image retrieval system based on optimised integration of DCD, wavelet and curvelet features. IET Image Proc. 11(2), 89–98 (2017)
Yildizer, E., Balci, A.M., Jarada, T.N., Alhajj, R.: Integrating wavelets with clustering and indexing for effective content-based image retrieval. Knowl.-Based Syst. 31, 55–66 (2012)
Kumar, K.M., Chowdhury, M., Bulo, S.R.: A graph-based relevance feedback mechanism in content-based image retrieval. Knowl.-Based Syst. 73, 254–264 (2015)
Jain, A.K., Vailaya, A.: Image retrieval using colour and shape. Pattern Recogn. 29(8), 1233–1244 (1996)
Flickner, M., Sawhney, H., Niblack, W.: Query by image and video content: the QBIC system. IEEE Comput. 28(9), 23–32 (1995)
Pass, G., Zabith, R.: Histogram refinement for content-based image retrieval. In: Proceedings of the Workshop on Applications of Computer Vision, pp. 96–102 (1996)
Huang, J., Kuamr, S., Mitra, M.: Image indexing using colour correlogram. In: Proceedings of the CVPR, pp. 762–765 (1997)
Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recogn. 37(1), 1–19 (2004)
Yang, C., Dong, M., Fotouhi, F.: Image content annotation using Bayesian framework and complement components analysis. In: Proceedings of the ICIP (2005)
Mezaris, V., Kompatsiaris, I., Strintzis, M.G.: An ontology approach to object-based image retrieval. In: Proceedings of the ICIP, pp. 511–514 (2003)
Zhang, D., Islam, M.M., Lu, G.: Semantic image retrieval using region based inverted file. In: Proceedings of the DICTA, pp. 242–249 (2009)
Yang, M., Kpalma, K., Ronsin, J.: A survey of shape feature extraction techniques. Pattern Recogn. 43–90 (2008)
ElAlami, M.E.: A novel image retrieval model based on the most relevant features. Knowl.-Based Syst. 24(1), 23–32 (2011)
Lin, C.-H., Chen, R.-T., Chan, Y.-C.: A smart content-based image retrieval system based on color and texture feature. Image Vis. Comput. 27(6), 658–665 (2009)
Chang, N.S., Fu, K.S.: A relational database system for images. Technical report TR-EE 79–28, Purdue University (1979)
Chang, N.S., Fu, K.S.: Query-by pictorial-example. IEEE Trans. Software Eng. SE-6(6), 519–524 (1980)
Chang, T., Kuo, C.-C.J.: Texture analysis and classification with tree-structured wavelet transform. IEEE Trans. Image Proc. 2(4), 429–441 (1993)
Gross, M.H., Koch, R., Lippert, L., Dreger, A.: Multiscale image texture analysis in wavelet spaces. In: Proceedings of the IEEE International Conference on Image Processing (1994)
Chang, S.-F., Eleftheriadis, A., McClintock, R.: Next-generation content representation, creation and searching for new media applications in education. Proc. IEEE 86(5), 884–904 (1998)
Chang, S.K.: Pictorial data-base systems. IEEE Comput. 14, 13–21 (1981)
Smith, J.R., Chang, S.-F.: Automated binary texture feature sets for image retrieval. In: Proceedings of the ICASSP 1996, Atlanta, GA (1996)
Chang, S.-K., Hsu, A.: Image information systems: where do we go from here? IEEE Trans. Knowl. Data Eng. 4(5), 431–442 (1992)
Chang, S.-K., Yan, C.W., Dimitroff, D.C., Arndt, T.: An intelligent image database system. IEEE Trans. Software Eng. 14(5), 681–688 (1988)
Shrivastava, N., Tyagi, V.: An efficient technique for retrieval of color images in large databases. Comput. Electr. Eng. (2014). http://dx.doi.org/10.1016/j.compeleceng.2014.11.009
Tamura, H., Yokoya, N.: Image database systems: a survey. Pattern Recogn. 17(1), 29–43 (1984)
Kundu, A., Chen, J.-L.: Texture classification using QMF bank-based subband decomposition. CVGIP Graph. Models Image Process. 54(5), 369–384 (1992)
Laine, A., Fan, J.: Texture classification by wavelet packet signatures. IEEE Trans. Pattern Recogn. Mach. Intell. 15(11), 1186–1191 (1993)
Smith, J.R., Chang, S.F.: Transform features for texture classification and discrimination in large image databases. In: Proceedings of the IEEE International Conference on Image Processing (1994)
Wallace, I., Wintz, P.: An efficient three-dimensional aircraft recognition algorithm using normalized Fourier descriptors. Comput. Graph. Image Process. 13, 99–126 (1980)
Murala, S., Maheshwari, R.P., Balasubramanian, R.: Directional local extrema patterns: a new descriptor for content based image retrieval. Int. J. Multimedia Inf. Retrieval 1(3), 191–203 (2012)
Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29, 51–59 (1996)
Takala, V., Ahonen, T., Pietikäinen, M.: Block-based methods for image retrieval using local binary patterns. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 882–891. Springer, Heidelberg (2005). https://doi.org/10.1007/11499145_89
Heikkil, M., Pietikainen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recogn. 42, 425–436 (2009)
Raghuwanshi, G., Tyagi, V.: Texture image retrieval using adaptive tetrolet transforms. Digit. Signal Proc. 48, 50–57 (2016)
Kingsbury, N.G.: Image processing with complex wavelet. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 357, 2543–2560 (1999)
Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18, 837–842 (1996)
Kokare, M., Biswas, P.K., Chatterji, B.N.: Texture image retrieval using new rotated complex wavelet filter. IEEE Trans. Syst. Man Cybern. 35(6), 1168–1178 (2005)
Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover, New York (1996)
Raghuwanshi, G., Tyagi, V.: Texture image retrieval based on block level directional local extrema patterns using tetrolet transform. In: Singh, M., Gupta, P.K., Tyagi, V., Flusser, J., Ören, T. (eds.) ICACDS 2018. CCIS, vol. 905, pp. 449–460. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-1810-8_45
Raghuwanshi, G., Tyagi, V.: A novel technique for content based image retrieval based on region-weight assignment. Multimedia Tools Appl. 77(2), 1889–19111 (2018)
Prithaj, B., Ayan, K.B., Avirup, B., Partha, P.R., Subrahmanyam, M.: Local Neighborhood Intensity Pattern – a new texture feature descriptor for image retrieval. Expert Syst. Appl. (2018). https://doi.org/10.1016/j.eswa.2018.06.044
Yao, C.H., Chen, S.Y.: Retrieval of translated, rotated and scaled color textures. Pattern Recogn. 36(4), 913–929 (2002)
Raghuwanshi, G., Tyagi, V.: Feed-forward content based image retrieval using adaptive tetrolet transforms. Multimedia Tools Appl. 77(18), 23389–234101 (2018)
Wang, X.-Y., Yu, Y.-J., Yang, H.-Y.: An effective image retrieval scheme using color, texture & shape features. Comput. Stan. Interfaces 33(1), 59–68 (2011)
Jhanwar, N., Chaudhuri, S., Seetharaman, G., Zavidovique, B.: Content based image retrieval using motif co-occurrence matrix. Image Vis. Comput. 22, 1211–1220 (2004)
Huang, P.W., Dai, S.K.: Image retrieval by texture similarity. Pattern Recogn. 36(3), 665–679 (2003)
Van, T.T., Le, T.M.: Content based image retrieval based on binary signatures cluster graph. Expert Syst. (2017). https://doi.org/10.1111/exsy.12220
Murala, S., Maheshwari, R.P., Balasubramanian, R.: Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans. Image Process. 21(5), 2874–2886 (2012)
Dubey, S.R., Singh, S.K., Singh, R.K.: Boosting local binary pattern with bag-of-filters for content based image retrieval. In: Proceedings of the IEEE UP Section Conference on Electrical, Computer and Electronics (UPCON) (2015)
Jia, L., James, Z.W., Gio, W.: IRM: integrated region matching for image retrieval. In: ACM International Conference on Multimedia, pp. 147–156 (2000)
Tyagi, V.: Content-Based Image Retrieval: Ideas, Influences, and Current Trends. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-6759-4
https://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Raghuwanshi, G., Tyagi, V. (2019). Impact of Feature Extraction Techniques on a CBIR System. In: Singh, M., Gupta, P., Tyagi, V., Flusser, J., Ören, T., Kashyap, R. (eds) Advances in Computing and Data Sciences. ICACDS 2019. Communications in Computer and Information Science, vol 1045. Springer, Singapore. https://doi.org/10.1007/978-981-13-9939-8_30
Download citation
DOI: https://doi.org/10.1007/978-981-13-9939-8_30
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-9938-1
Online ISBN: 978-981-13-9939-8
eBook Packages: Computer ScienceComputer Science (R0)