Impact of Feature Extraction Techniques on a CBIR System | SpringerLink
Skip to main content

Impact of Feature Extraction Techniques on a CBIR System

  • Conference paper
  • First Online:
Advances in Computing and Data Sciences (ICACDS 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1045))

Included in the following conference series:

  • 991 Accesses

Abstract

Feature extraction is a key step and plays a deciding role for the performance of an image retrieval system. Success of a Content Based Image Retrieval System depends on the used features of the image. This paper includes a wide-range of survey on the various feature extraction process and their impact on the working behavior of an image retrieval system. This impact is calculated on the basis of retrieval accuracy, retrieval time, space complexity and feature extraction time. Comprehensive survey on the recent trends and challenges to the retrieval system has also been discussed. Furthermore, directions and suggestions, based on the real world applications are also suggested for encouraging the researchers in the area of image processing for adopting the optimized feature extraction process. This survey also tries to fill the gap between the traditional approaches and recent trends of feature extraction. More importantly, this paper also surveyed the issues with the feature extraction techniques in spatial as well as spectral domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 10524
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 13155
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dubey, S.R., Singh, S.K., Singh, R.K.: Rotation and scale invariant hybrid image descriptor and retrieval. Comput. Electr. Eng. 46, 288–302 (2015)

    Article  Google Scholar 

  2. Fadaei, S., Amirfattahi, R., Ahmadzadeh, M.R.: New content-based image retrieval system based on optimised integration of DCD, wavelet and curvelet features. IET Image Proc. 11(2), 89–98 (2017)

    Article  Google Scholar 

  3. Yildizer, E., Balci, A.M., Jarada, T.N., Alhajj, R.: Integrating wavelets with clustering and indexing for effective content-based image retrieval. Knowl.-Based Syst. 31, 55–66 (2012)

    Article  Google Scholar 

  4. Kumar, K.M., Chowdhury, M., Bulo, S.R.: A graph-based relevance feedback mechanism in content-based image retrieval. Knowl.-Based Syst. 73, 254–264 (2015)

    Article  Google Scholar 

  5. Jain, A.K., Vailaya, A.: Image retrieval using colour and shape. Pattern Recogn. 29(8), 1233–1244 (1996)

    Article  Google Scholar 

  6. Flickner, M., Sawhney, H., Niblack, W.: Query by image and video content: the QBIC system. IEEE Comput. 28(9), 23–32 (1995)

    Article  Google Scholar 

  7. Pass, G., Zabith, R.: Histogram refinement for content-based image retrieval. In: Proceedings of the Workshop on Applications of Computer Vision, pp. 96–102 (1996)

    Google Scholar 

  8. Huang, J., Kuamr, S., Mitra, M.: Image indexing using colour correlogram. In: Proceedings of the CVPR, pp. 762–765 (1997)

    Google Scholar 

  9. Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recogn. 37(1), 1–19 (2004)

    Article  Google Scholar 

  10. Yang, C., Dong, M., Fotouhi, F.: Image content annotation using Bayesian framework and complement components analysis. In: Proceedings of the ICIP (2005)

    Google Scholar 

  11. Mezaris, V., Kompatsiaris, I., Strintzis, M.G.: An ontology approach to object-based image retrieval. In: Proceedings of the ICIP, pp. 511–514 (2003)

    Google Scholar 

  12. Zhang, D., Islam, M.M., Lu, G.: Semantic image retrieval using region based inverted file. In: Proceedings of the DICTA, pp. 242–249 (2009)

    Google Scholar 

  13. Yang, M., Kpalma, K., Ronsin, J.: A survey of shape feature extraction techniques. Pattern Recogn. 43–90 (2008)

    Google Scholar 

  14. ElAlami, M.E.: A novel image retrieval model based on the most relevant features. Knowl.-Based Syst. 24(1), 23–32 (2011)

    Article  Google Scholar 

  15. Lin, C.-H., Chen, R.-T., Chan, Y.-C.: A smart content-based image retrieval system based on color and texture feature. Image Vis. Comput. 27(6), 658–665 (2009)

    Article  Google Scholar 

  16. Chang, N.S., Fu, K.S.: A relational database system for images. Technical report TR-EE 79–28, Purdue University (1979)

    Google Scholar 

  17. Chang, N.S., Fu, K.S.: Query-by pictorial-example. IEEE Trans. Software Eng. SE-6(6), 519–524 (1980)

    Article  Google Scholar 

  18. Chang, T., Kuo, C.-C.J.: Texture analysis and classification with tree-structured wavelet transform. IEEE Trans. Image Proc. 2(4), 429–441 (1993)

    Article  Google Scholar 

  19. Gross, M.H., Koch, R., Lippert, L., Dreger, A.: Multiscale image texture analysis in wavelet spaces. In: Proceedings of the IEEE International Conference on Image Processing (1994)

    Google Scholar 

  20. Chang, S.-F., Eleftheriadis, A., McClintock, R.: Next-generation content representation, creation and searching for new media applications in education. Proc. IEEE 86(5), 884–904 (1998)

    Article  Google Scholar 

  21. Chang, S.K.: Pictorial data-base systems. IEEE Comput. 14, 13–21 (1981)

    Article  Google Scholar 

  22. Smith, J.R., Chang, S.-F.: Automated binary texture feature sets for image retrieval. In: Proceedings of the ICASSP 1996, Atlanta, GA (1996)

    Google Scholar 

  23. Chang, S.-K., Hsu, A.: Image information systems: where do we go from here? IEEE Trans. Knowl. Data Eng. 4(5), 431–442 (1992)

    Article  Google Scholar 

  24. Chang, S.-K., Yan, C.W., Dimitroff, D.C., Arndt, T.: An intelligent image database system. IEEE Trans. Software Eng. 14(5), 681–688 (1988)

    Article  Google Scholar 

  25. Shrivastava, N., Tyagi, V.: An efficient technique for retrieval of color images in large databases. Comput. Electr. Eng. (2014). http://dx.doi.org/10.1016/j.compeleceng.2014.11.009

  26. Tamura, H., Yokoya, N.: Image database systems: a survey. Pattern Recogn. 17(1), 29–43 (1984)

    Article  Google Scholar 

  27. Kundu, A., Chen, J.-L.: Texture classification using QMF bank-based subband decomposition. CVGIP Graph. Models Image Process. 54(5), 369–384 (1992)

    Article  Google Scholar 

  28. Laine, A., Fan, J.: Texture classification by wavelet packet signatures. IEEE Trans. Pattern Recogn. Mach. Intell. 15(11), 1186–1191 (1993)

    Article  Google Scholar 

  29. Smith, J.R., Chang, S.F.: Transform features for texture classification and discrimination in large image databases. In: Proceedings of the IEEE International Conference on Image Processing (1994)

    Google Scholar 

  30. Wallace, I., Wintz, P.: An efficient three-dimensional aircraft recognition algorithm using normalized Fourier descriptors. Comput. Graph. Image Process. 13, 99–126 (1980)

    Article  Google Scholar 

  31. Murala, S., Maheshwari, R.P., Balasubramanian, R.: Directional local extrema patterns: a new descriptor for content based image retrieval. Int. J. Multimedia Inf. Retrieval 1(3), 191–203 (2012)

    Article  MATH  Google Scholar 

  32. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29, 51–59 (1996)

    Article  Google Scholar 

  33. Takala, V., Ahonen, T., Pietikäinen, M.: Block-based methods for image retrieval using local binary patterns. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 882–891. Springer, Heidelberg (2005). https://doi.org/10.1007/11499145_89

    Chapter  Google Scholar 

  34. Heikkil, M., Pietikainen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recogn. 42, 425–436 (2009)

    Article  MATH  Google Scholar 

  35. Raghuwanshi, G., Tyagi, V.: Texture image retrieval using adaptive tetrolet transforms. Digit. Signal Proc. 48, 50–57 (2016)

    Article  MathSciNet  Google Scholar 

  36. Kingsbury, N.G.: Image processing with complex wavelet. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 357, 2543–2560 (1999)

    Article  MATH  Google Scholar 

  37. Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18, 837–842 (1996)

    Article  Google Scholar 

  38. Kokare, M., Biswas, P.K., Chatterji, B.N.: Texture image retrieval using new rotated complex wavelet filter. IEEE Trans. Syst. Man Cybern. 35(6), 1168–1178 (2005)

    Article  Google Scholar 

  39. Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover, New York (1996)

    Google Scholar 

  40. Raghuwanshi, G., Tyagi, V.: Texture image retrieval based on block level directional local extrema patterns using tetrolet transform. In: Singh, M., Gupta, P.K., Tyagi, V., Flusser, J., Ören, T. (eds.) ICACDS 2018. CCIS, vol. 905, pp. 449–460. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-1810-8_45

    Chapter  Google Scholar 

  41. Raghuwanshi, G., Tyagi, V.: A novel technique for content based image retrieval based on region-weight assignment. Multimedia Tools Appl. 77(2), 1889–19111 (2018)

    Article  Google Scholar 

  42. Prithaj, B., Ayan, K.B., Avirup, B., Partha, P.R., Subrahmanyam, M.: Local Neighborhood Intensity Pattern – a new texture feature descriptor for image retrieval. Expert Syst. Appl. (2018). https://doi.org/10.1016/j.eswa.2018.06.044

    Article  Google Scholar 

  43. Yao, C.H., Chen, S.Y.: Retrieval of translated, rotated and scaled color textures. Pattern Recogn. 36(4), 913–929 (2002)

    Article  Google Scholar 

  44. Raghuwanshi, G., Tyagi, V.: Feed-forward content based image retrieval using adaptive tetrolet transforms. Multimedia Tools Appl. 77(18), 23389–234101 (2018)

    Article  Google Scholar 

  45. Wang, X.-Y., Yu, Y.-J., Yang, H.-Y.: An effective image retrieval scheme using color, texture & shape features. Comput. Stan. Interfaces 33(1), 59–68 (2011)

    Article  Google Scholar 

  46. Jhanwar, N., Chaudhuri, S., Seetharaman, G., Zavidovique, B.: Content based image retrieval using motif co-occurrence matrix. Image Vis. Comput. 22, 1211–1220 (2004)

    Article  Google Scholar 

  47. Huang, P.W., Dai, S.K.: Image retrieval by texture similarity. Pattern Recogn. 36(3), 665–679 (2003)

    Article  Google Scholar 

  48. Van, T.T., Le, T.M.: Content based image retrieval based on binary signatures cluster graph. Expert Syst. (2017). https://doi.org/10.1111/exsy.12220

    Article  Google Scholar 

  49. Murala, S., Maheshwari, R.P., Balasubramanian, R.: Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans. Image Process. 21(5), 2874–2886 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Dubey, S.R., Singh, S.K., Singh, R.K.: Boosting local binary pattern with bag-of-filters for content based image retrieval. In: Proceedings of the IEEE UP Section Conference on Electrical, Computer and Electronics (UPCON) (2015)

    Google Scholar 

  51. Jia, L., James, Z.W., Gio, W.: IRM: integrated region matching for image retrieval. In: ACM International Conference on Multimedia, pp. 147–156 (2000)

    Google Scholar 

  52. Tyagi, V.: Content-Based Image Retrieval: Ideas, Influences, and Current Trends. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-6759-4

    Book  MATH  Google Scholar 

  53. https://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html

  54. http://wang.ist.psu.edu/docs/related/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Tyagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raghuwanshi, G., Tyagi, V. (2019). Impact of Feature Extraction Techniques on a CBIR System. In: Singh, M., Gupta, P., Tyagi, V., Flusser, J., Ören, T., Kashyap, R. (eds) Advances in Computing and Data Sciences. ICACDS 2019. Communications in Computer and Information Science, vol 1045. Springer, Singapore. https://doi.org/10.1007/978-981-13-9939-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9939-8_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9938-1

  • Online ISBN: 978-981-13-9939-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics