Abstract
Handwriting based gender identification at the word level is challenging due to free style writing, use of different scripts, and inadequate information. This paper presents a new method based on Multi-Gabor Response (MGR) fusion for gender identification at the word level. It first explores weighted-gradient features for word segmentation from text line images. For each word, the proposed method obtains eight Gabor response images. Then it performs sliding window operation over MGR images to smooth the values. For each smoothed MGR images, we perform fusion operation that chooses the Gabor response value which contributes to the highest peak in the histogram. This process results in a feature matrix, which is fed to CNN for gender identification. Experimental results on our dataset (multi scripts) apart from English, and benchmark databases, namely, IAM, KHATT, and QUWI, which contain handwritten English and Arabic text, show that the proposed method outperforms the existing methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kalsi, K.S., Rai, P.: A classification of emotion and gender using approximation image Gabor local binary pattern. In: 7th International Conference on Cloud Computing, Data Science & Engineering, pp 623–628. IEEE (2017)
Topaloglu, M., Ekmekci, S.: Gender detection and identifying one’s handwriting with handwriting analysis. Expert Syst. Appl. 79, 236–243 (2017)
Navya, B., et al.: Multi-gradient directional features for gender identification. In: 24th International Conference on Pattern Recognition (ICPR), pp. 3657–3662. IEEE (2018)
Bouadjenek, N., Nemmour, H., Chibani, Y.: Robust soft-biometrics prediction from off-line handwriting analysis. Appl. Soft Comput. 46, 980–990 (2016)
Wshah, S., Shi, Z., Govindaraju, V.: Segmentation of Arabic handwriting based on both contour and skeleton segmentation. In: 10th International Conference on Document Analysis and Recognition ICDAR 2009, pp. 793–797. IEEE (2009)
Louloudis, G., Gatos, B., Pratikakis, I., Halatsis, C.: Text line and word segmentation of handwritten documents. Pattern Recogn. 42(12), 3169–3183 (2009)
Osman, Y.: Segmentation algorithm for Arabic handwritten text based on contour analysis. In: International Conference on Computing, Electrical and Electronics Engineering (ICCEEE), pp. 447–452. IEEE (2013)
Banumathi, K., Chandra, A.J.: Line and word segmentation of Kannada handwritten text documents using projection profile technique. In: International Conference on Electrical, Electronics, Communication, Computer and Optimization Techniques (ICEECCOT), pp. 196–201. IEEE (2016)
Khare, V., et al.: Weighted-gradient features for handwritten line segmentation. In: 24th International Conference on Pattern Recognition (ICPR), pp. 3651–3656. IEEE (2018)
Bouadjenek, N., Nemmour, H., Chibani, Y.: Age, gender and handedness prediction from handwriting using gradient features. In: 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 1116–1120. IEEE (2015)
Maji, P., Chatterjee, S., Chakraborty, S., Kausar, N., Samanta, S., Dey, N.: Effect of Euler number as a feature in gender recognition system from offline handwritten signature using neural networks. In: 2nd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 1869–1873. IEEE (2015)
Mirza, A., Moetesum, M., Siddiqi, I., Djeddi, C.: Gender classification from offline handwriting images using textural features. In: 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 395–398. IEEE (2016)
Tan, J., Bi, N., Suen, C.Y., Nobile, N.: Multi-feature selection of handwriting for gender identification using mutual information. In: 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 578–583. IEEE (2016)
Akbari, Y., Nouri, K., Sadri, J., Djeddi, C., Siddiqi, I.: Wavelet-based gender detection on off-line handwritten documents using probabilistic finite state automata. Image Vis. Comput. 59, 17–30 (2017)
Navya, B., et al.: Adaptive multi-gradient kernels for handwritting based gender identification. In: 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 392–397. IEEE (2018)
Moetesum, M., Siddiqi, I., Djeddi, C., Hannad, Y., Al-Maadeed, S.: Data driven feature extraction for gender classification using multi-script handwritten texts. In: 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 564–569. IEEE (2018)
Saxena, A.K., Chaurasiya, V.K.: Multi-resolution texture analysis for fingerprint based age-group estimation. Multimedia Tools Appl. 77(5), 6051–6077 (2018)
McAllister, P., Zheng, H., Bond, R., Moorhead, A.: Towards personalised training of machine learning algorithms for food image classification using a smartphone camera. In: García, C.R., Caballero-Gil, P., Burmester, M., Quesada-Arencibia, A. (eds.) UCAmI 2016. LNCS, vol. 10069, pp. 178–190. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48746-5_18
Acknowledgement
This work was supported by the Natural Science Foundation of China under Grant 61672273 and Grant 61832008, and the Science Foundation for Distinguished Young Scholars of Jiangsu under Grant BK20160021.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Asadzadeh Kaljahi, M., Vidya Varshini, P.V., Shivakumara, P., Pal, U., Lu, T., Guru, D.S. (2019). Word-Wise Handwriting Based Gender Identification Using Multi-Gabor Response Fusion. In: Sundaram, S., Harit, G. (eds) Document Analysis and Recognition. DAR 2018. Communications in Computer and Information Science, vol 1020. Springer, Singapore. https://doi.org/10.1007/978-981-13-9361-7_11
Download citation
DOI: https://doi.org/10.1007/978-981-13-9361-7_11
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-9360-0
Online ISBN: 978-981-13-9361-7
eBook Packages: Computer ScienceComputer Science (R0)