Abstract
One crucial tool in machine learning is a measure of partition similarity. This study focuses on the “probabilistic Rand index”, a variant of the Rand index. We look at this measure from different perspectives: probabilistic, information-theoretic, and diversity-theoretic. These give some insight, reveal relationships with other types of measures, and suggest some possible alternative interpretations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Choi, S.S., Cha, S.H., Tappert, C.C.: A survey of binary similarity and distance measures. J. Syst. Cybern. Inform. 8, 43–48 (2010)
Rovetta, S., Masulli, F.: An experimental validation of some indexes of fuzzy clustering similarity. In: Di Gesù, V., Pal, S.K., Petrosino, A. (eds.) 8th International Workshop on Fuzzy Logic and Applications (WILF 2009), Palermo, Italy, 9–12 June 2009. Lecture Notes in Computer Science, vol. 5571, pp. 132–139. Springer, Berlin (2009)
Campello, R.J.G.B.: Generalized external indexes for comparing data partitions with overlapping categories. Pattern Recogn. Lett. 31, 966–975 (2010). https://doi.org/10.1016/j.patrec.2010.01.002
Rand, W.: Objective criteria for the evaluation of clustering methods. J. Am. Statistical Assoc. 66, 846–850 (1971)
Carpineto, C., Romano, G.: Consensus clustering based on a new probabilistic rand index with application to subtopic retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2315–2326 (2012)
Rovetta, S., Masulli, F.: Visual stability analysis for model selection in graded possibilistic clustering. Inform. Sci. 279, 37–51 (2014). https://doi.org/10.1016/j.ins.2014.01.031
Anderson, D.T., Bezdek, J.C., Popescu, M., Keller, J.M.: Comparing fuzzy, probabilistic, and possibilistic partitions. IEEE Trans. Fuzzy Syst. 18(5), 906–918 (2010). https://doi.org/10.1109/TFUZZ.2010.2052258
Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 193–218 (1985)
Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Series in Telecommunications and Signal Processing. Wiley, New Jersey, USA (2006)
Kullback, S.: Information Theory and Statistics. Wiley Publication in Mathematical Statistics, New York (1959)
Hill, M.O.: Diversity and evenness: a unifying notation and its consequences. Ecology 54(2), 427–432 (1973)
Jost, L.: Entropy and diversity. Oikos 113(2), 363–375 (2006). https://doi.org/10.1111/j.2006.0030-1299.14714.x
Gini, C.: Variabilità e mutabilità: Contributo allo studio delle distribuzioni e delle relazioni statistiche. Tipografia di P. Cuppini, Bologna (1912)
Simpson, E.H.: Measurement of diversity. Nature 163(4148), 688 (1949)
Asuncion, A., Newman, D.J.: UCI machine learning repository (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Rovetta, S., Masulli, F., Cabri, A. (2020). The “Probabilistic Rand Index”: A Look from Some Different Perspectives. In: Esposito, A., Faundez-Zanuy, M., Morabito, F., Pasero, E. (eds) Neural Approaches to Dynamics of Signal Exchanges. Smart Innovation, Systems and Technologies, vol 151. Springer, Singapore. https://doi.org/10.1007/978-981-13-8950-4_10
Download citation
DOI: https://doi.org/10.1007/978-981-13-8950-4_10
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-8949-8
Online ISBN: 978-981-13-8950-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)