Real-Time Semantic Mapping of Visual SLAM Based on DCNN | SpringerLink
Skip to main content

Real-Time Semantic Mapping of Visual SLAM Based on DCNN

  • Conference paper
  • First Online:
Digital TV and Multimedia Communication (IFTC 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1009))

  • 1037 Accesses

Abstract

Visual SLAM (Simultaneous Localization and Mapping) has been widely used in location and path planning of unmanned systems. However, the map created by visual SLAM system only contain low-level information. The unmanned system can work better if high-level semantic information is included. In this paper, we proposed a visual semantic SLAM method using DCNN (Deep Convolution Neural Network). The network is composed of feature extraction, multi-scale process and classification layers. We apply atrous convolution to GoogLeNet for feature extraction to increase the speed of network and to increase the resolution of the feature map. Spatial pyramid pooling is used in multi-scale process and Softmax is used in classification layers. The results reveals that the mIoU of our network on PASCAL 2012 is 0.658 and it takes 101 ms to infer an image with the size of 256 × 212 on NVIDIA Jetson TX2 embedded module, which can be used in real-time visual SLAM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Davison, A.J.: Real-time simultaneous localisation and mapping with a single camera. In: IEEE International Conference on Computer Vision, p. 1403. IEEE Computer Society (2003)

    Google Scholar 

  2. Davison, A.J., Reid, I.D., Molton, N.D., et al.: MonoSLAM: real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007)

    Article  Google Scholar 

  3. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 1–10. IEEE Computer Society (2007)

    Google Scholar 

  4. Mur-Artal, R., Montiel, J.M.M., Tardós, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31(5), 1147–1163 (2017)

    Article  Google Scholar 

  5. Engel, J., Cremers, D.: Semi-dense visual odometry for a monocular camera. In: IEEE International Conference on Computer Vision, pp. 1449–1456. IEEE Computer Society (2013)

    Google Scholar 

  6. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part II. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_54

    Chapter  Google Scholar 

  7. Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: fast semi-direct monocular visual odometry. In: IEEE International Conference on Robotics and Automation, pp. 15–22. IEEE (2014)

    Google Scholar 

  8. Labbé, M., Michaud, F.: Online global loop closure detection for large-scale multi-session graph-based SLAM. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2661–2666. IEEE (2014)

    Google Scholar 

  9. Yang, S., Song, Y., Kaess, M., et al.: Pop-up SLAM: semantic monocular plane SLAM for low-texture environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1222–1229. IEEE (2016)

    Google Scholar 

  10. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: NIPS (2015)

    Google Scholar 

  11. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9. IEEE (2015)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S, et al.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778. IEEE Computer Society (2016)

    Google Scholar 

  13. Girshick, R.: Fast R-CNN. In: IEEE International Conference on Computer Vision, pp. 1440–1448. IEEE (2015)

    Google Scholar 

  14. Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: International Conference on Neural Information Processing Systems, pp. 91–99. MIT Press (2015)

    Google Scholar 

  15. He, K., Gkioxari, G., Dollár, P., et al.: Mask R-CNN. In: IEEE International Conference on Computer Vision, pp. 2980–2988. IEEE (2017)

    Google Scholar 

  16. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440. IEEE Computer Society (2015)

    Google Scholar 

  17. Zhao, H., Shi, J., Qi, X., et al.: Pyramid scene parsing network. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6230–6239. IEEE Computer Society (2017)

    Google Scholar 

  18. Tateno, K., Tombari, F., Laina, I., et al.: CNN-SLAM: real-time dense monocular SLAM with learned depth prediction. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6565–6574. IEEE Computer Society (2017)

    Google Scholar 

  19. Chen, L.C., Papandreou, G., Kokkinos, I., et al.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

    Article  Google Scholar 

Download references

Acknowledgment

The authors greatly appreciate the financial supports of Shanghai Science and Technology Committee under Grant 17DZ1100808 and 17DZ1100803 and Shanghai Aerospace Science and Technology Innovation Fund under Grand SAST2016096.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, X., Zhu, Y., Zheng, B., Huang, J. (2019). Real-Time Semantic Mapping of Visual SLAM Based on DCNN. In: Zhai, G., Zhou, J., An, P., Yang, X. (eds) Digital TV and Multimedia Communication. IFTC 2018. Communications in Computer and Information Science, vol 1009. Springer, Singapore. https://doi.org/10.1007/978-981-13-8138-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-8138-6_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-8137-9

  • Online ISBN: 978-981-13-8138-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics