A Novel Convolutional Neural Network for Facial Expression Recognition | SpringerLink
Skip to main content

A Novel Convolutional Neural Network for Facial Expression Recognition

  • Conference paper
  • First Online:
Cognitive Systems and Signal Processing (ICCSIP 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1006))

Included in the following conference series:

Abstract

Facial expression recognition is becoming a hot topic due to its wide applications in computer vision research fields. Traditional methods adopt hand-crafted features combined with classifiers to achieve the recognition goal. However, the accuracy of these methods often relies heavily on the extracted features and the classifier’s parameters, and thus cannot get good result with unseen data. Recently, deep learning, which simulates the mechanism of human brain to interpret data, has shown remarkable results in visual object recognition. In this paper, we present a novel convolutional neural network which consists of local binary patterns and improved Inception-ResNet layers for automatic facial expression recognition. We apply the proposed method to three expression datasets, i.e., the Extended Cohn-kanade Dataset (CK+), the Japanese Female Expression Database (JAFFE), and the FER2013 Dataset. The experimental results demonstrate the feasibility and effectiveness of our proposed network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  2. Shimodaira, H.: Improving predictive inference under covariate shift by weighting the log likelihood function. J. Stat. Plan. Inference 90(2), 227–244 (2000)

    Article  MathSciNet  Google Scholar 

  3. Mollahosseini, A., Chan, D., Mahoor, M.H.: Going deeper in facial expression recognition using deep neural networks. In: IEEE Winter Conference on Applications of Computer Vision. IEEE, pp. 1–10 (2016)

    Google Scholar 

  4. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, pp. 1–9 (2015)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, pp. 770–778 (2016)

    Google Scholar 

  6. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  7. Szegedy, C., Ioffe, S., Vanhoucke, V., et al.: Inception-v4, Inception-ResNet and the impact of residual connections on learning. arXiv:1602.07261 (2016)

  8. Hasani, B., Mahoor, M.H.: Spatio-temporal facial expression recognition using convolutional neural networks and conditional random fields. In: IEEE International Conference on Automatic Face & Gesture Recognition. IEEE, pp. 790–795 (2017)

    Google Scholar 

  9. Hasani, B., Mahoor, M.H.: Facial expression recognition using enhanced deep 3D convolutional neural networks. In: Computer Vision and Pattern Recognition Workshops, pp. 2278–2288 (2017)

    Google Scholar 

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: International Conference on Neural Information Processing Systems. Curran Associates Inc., pp. 1097–1105 (2012)

    Google Scholar 

  11. Ojala, T., Harwood, I.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognit. 29(1), 51–59 (1996)

    Article  Google Scholar 

  12. Ali, A., Hussain, S., Haroon, F., et al.: Face recognition with local binary patterns. Bahria Univ. J. Inf. Commun. Technol. 5(1), 46–50 (2014)

    Google Scholar 

  13. Ojala, T., Pietikinen, M., Menp, T.: Multiresolution grayscale and rotation invariant texture classification with local binary patterns. IEEE PAMI 24(7), 971–987 (2002)

    Article  Google Scholar 

  14. Lucey, P., Cohn, J.F., Kanade, Y., Saragih, J., Ambadar, Z., Matthews, I.: The extended Cohn-Kanade dataset (CK+): a complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, pp. 94–101 (2010)

    Google Scholar 

  15. Tian, Y., Brown, L., Hampapur, A., Pankanti, S., Senior, A., Bolle, R.: Real world real-time automatic recognition of facial expression. In: Proceedings of IEEE Workshop on (2003)

    Google Scholar 

  16. Lyons, M., Akamatsu, S., Kamachi, M., et al.: Coding facial expressions with gabor wavelets. In: IEEE International Conference on Automatic Face and Gesture Recognition, pp. 200–205 (1998)

    Google Scholar 

  17. Song, Z., Ni, B., Guo, D., Sim, T., Yan, S.: Learning universal multi-view age estimator using video context. In: Proceedings of IEEE International Conference Computer Vision, pp. 241–248 (2011)

    Google Scholar 

  18. Lucey, P., Cohn, J., Lucey, S., Matthews, I., Sridharan, S., Prkachin, K.: Automatically detecting pain using facial actions. In: IEEE International Conference on Affective Computing and Intelligent Interaction, pp. 1–8 (2009)

    Google Scholar 

  19. Lecun, Y., Bottou, L., Bengio, Y.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(2), 1097–1105 (2012)

    Google Scholar 

  21. Happy, S.L., Routray, A.: Automatic facial expression recognition using features of salient facial patches. IEEE Trans. Affect. Comput. 6(1), 1–12 (2015)

    Article  Google Scholar 

  22. Rodriguez, P., Cucurull, G., Gonzàlez, J.: Deep pain: exploiting long short-term memory networks for facial expression classification. IEEE Trans. Cybern. 1–11 (2017). https://doi.org/10.1109/TCYB.2017.2662199

  23. Mehrabian, A.: Communication without words. Psychol. Today 2(4), 53–56 (1968)

    Google Scholar 

  24. Picard, R.W.: Affective computing. MIT Press, vol. 1, no. 1, pp. 71–73 (1997)

    Google Scholar 

  25. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Article  Google Scholar 

  26. Ekman, P., Friesen, W.V.: Constants across cultures in the face and emotion. Pers. Soc. Psychol. 17(2), 124–129 (1971)

    Article  Google Scholar 

  27. Ekman, P., Friesen, W.: Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press, Palo Alto (1978)

    Google Scholar 

  28. Suwa, M., Sugie, N., Fujimora, K.: A preliminary note on pattern recognition of human emotional expression. In: Proceedings of the Fourth International Joint Conference on Pattern Recognition, Kyoto, Japan, pp. 408–410 (1978)

    Google Scholar 

  29. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  30. Lecun, Y.: Generalization and network design strategies. In: Connectionism in Perspective (1989)

    Google Scholar 

  31. Lv, Y., Feng, Z., Xu, C.: Facial expression recognition via deep learning. In: International Conference on Smart Computing. IEEE, pp. 347–355 (2015)

    Google Scholar 

  32. Tang, Y.: Deep learning using linear support vector machines. Eprint Arxiv (2013)

    Google Scholar 

  33. The FER2013 dataset. https://www.kaggle.com/c/challenges-in-representation-learning-facial-expression-recognition-challenge/data

  34. Zheng, L., Shen, L., Tian, L.: Person re-identification meets image search. Comput. Sci. 1 (2015). https://doi.org/10.1109/TPAMI.2015.2505297

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China under Grant 61463032 and 61703198, Natural Science Foundation for Distinguished Young Scholars of Jiangxi Province under Grant 2018ACB21014, Open Fund of State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences under Grant 20180109.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaojie Ju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Mi, Y., Yu, J., Ju, Z. (2019). A Novel Convolutional Neural Network for Facial Expression Recognition. In: Sun, F., Liu, H., Hu, D. (eds) Cognitive Systems and Signal Processing. ICCSIP 2018. Communications in Computer and Information Science, vol 1006. Springer, Singapore. https://doi.org/10.1007/978-981-13-7986-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7986-4_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7985-7

  • Online ISBN: 978-981-13-7986-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics