A Flexible Memristor-Based Neural Network | SpringerLink
Skip to main content

A Flexible Memristor-Based Neural Network

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 951))

  • 914 Accesses

Abstract

Many memristor-based neural network arrays that have been proposed in recent years are simultaneously dealt with all of their signal inputs in signal reception status. Therefore, when a relatively small-scale neural network is implemented with this memristive array, some of the inputs which are not used may cause errors in the result due to the impact of an unexpected signal. In this paper, a flexible memristor-based neural network is proposed. Based on this network, the number of synapses used at work can be flexibly configured according to the required size, thereby improving system performance. The memristor-based neural network is simulated in Pspice to implement two different scales, which proves the feasibility and effectiveness of a flexible memristive neural network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chua, L.O.: Memristor-the missing circuit element. IEEE Trans. Circ. Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  2. Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  3. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80 (2008)

    Article  Google Scholar 

  4. Williams, R.S.: How we found the missing memristor. IEEE Spectrum 45(12), 28–35 (2008)

    Article  Google Scholar 

  5. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

    Article  Google Scholar 

  6. Kim, H., Sah, M.P., Yang, C., Roska, T., Chua, L.O.: Neural synaptic weighting with a pulse-based memristor circuit. IEEE Trans. Circ. Syst. I: Regul. Pap. 59(1), 148–158 (2012)

    MathSciNet  Google Scholar 

  7. Liu, B., Chen, Y., Wysocki, B., Huang, T.: Reconfigurable neuromorphic computing system with memristor-based synapse design. Neural Process. Lett. 41(2), 159–167 (2015)

    Article  Google Scholar 

  8. Indiveri, G., Linares, B.B., Legenstein, R., Deligeorgis, G., Prodromakis, T.: Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology 24(38), 384010 (2013)

    Article  Google Scholar 

  9. Kim, H., Sah, M.P., Yang, C., Roska, T., Chua, L.O.: Memristor bridge synapses. Proc. IEEE 100(6), 2061–2070 (2012)

    Article  Google Scholar 

  10. Sah, M.P., Yang, C., Kim, H., Chua, L.O.: A voltage mode memristor bridge synaptic circuit with memristor emulators. Sensors 12(3), 3587–3604 (2012)

    Article  Google Scholar 

  11. Azghadi, M.R., Linares, B.B., Abbott, D., Leong, P.H.: A hybrid cmos-memristor neuromorphic synapse. IEEE Trans. Biomed. Circ. Syst. 11(2), 434–445 (2017)

    Article  Google Scholar 

  12. Adhikari, S.P., Yang, C., Kim, H., Chua, L.O.: Memristor bridge synapse-based neural network and its learning. IEEE Trans. Neural Netw. Learn. Syst. 23(9), 1426–1435 (2012)

    Article  Google Scholar 

  13. Ebong, I.E., Mazumder, P.: CMOS and memristor-based neural network design for position detection. Proc. IEEE 100(6), 2050–2060 (2012)

    Article  Google Scholar 

  14. Duan, S., Hu, X., Dong, Z., Wang, L., Mazumder, P.: Memristor-based cellular nonlinear/neural network: design, analysis, and applications. IEEE Trans. Neural Netw. Learn. Syst. 26(6), 1202–1213 (2015)

    Article  MathSciNet  Google Scholar 

  15. Wang, Z., Wang, X.: A novel memristor-based circuit implementation of full-function Pavlov associative memory accorded with biological feature. IEEE Trans. Circ. Syst. I: Regul. Pap. 65(7), 2210–2220 (2018)

    Google Scholar 

  16. Sheridan, P.M., Cai, F., Du, C., Ma, W., Zhang, Z., Lu, W.D.: Sparse coding with memristor networks. Nat. Nanotechnol. 12(8), 784 (2017)

    Article  Google Scholar 

  17. Wen, S., Huang, T., Zeng, Z., Chen, Y., Li, P.: Circuit design and exponential stabilization of memristive neural networks. Neural Netw. 63, 48–56 (2015)

    Article  Google Scholar 

  18. Yang, J., Wang, L., Wang, Y., Guo, T.: A novel memristive Hopfield neural network with application in associative memory. Neurocomputing 227, 142–148 (2017)

    Article  Google Scholar 

  19. Adam, G.C., Hoskins, B.D., Prezioso, M., Merrikh, B.F., Chakrabarti, B., Strukov, D.B.: 3-D memristor crossbars for analog and neuromorphic computing applications. IEEE Trans. Electron Devices 64(1), 312–318 (2017)

    Article  Google Scholar 

  20. Prezioso, M., Merrikh, B.F., Hoskins, B.D., Adam, G.C., Likharev, K.K., Strukov, D.B.: Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521(7550), 61 (2015)

    Article  Google Scholar 

  21. Hu, S.G., et al.: Associative memory realized by a reconfigurable memristive Hopfield neural network. Nature Commun. 6, 7522 (2015)

    Article  Google Scholar 

  22. Li, C., et al.: Efficient and self-adaptive in-situ learning in multilayer memristor neural networks. Nature Commun. 9(1), 2385 (2018)

    Article  Google Scholar 

  23. Wang, Z., et al.: Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electr. 1(2), 137 (2018)

    Article  Google Scholar 

  24. Wang, J.J., et al.: Predicting house price with a memristor-based artificial neural network. IEEE Access 6, 16523–16528 (2018)

    Article  Google Scholar 

  25. Yao, P., et al.: Face classification using electronic synapses. Nature Commun. 8, 15199 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

The work is supported by the State Key Program of National Natural Science of China (Grant No. 61632002), the National Key R&D Program of China for International S&T Cooperation Projects (No. 2017YFE010 3900), the National Natural Science of China (Grant Nos. 61603348, 61775198, 61603347, 61572446, 61472372), Science and Technology Innovation Talents Henan Province (Grant No. 174200510012), Research Program of Henan Province (Grant Nos. 172102210066, 17A120005, 182102210160), Youth Talent Lifting Project of Henan Province and the Science Foundation of for Doctorate Research of Zhengzhou University of Light Industry (Grant No. 2014BSJJ044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, J., Han, G., Wang, Y. (2018). A Flexible Memristor-Based Neural Network. In: Qiao, J., et al. Bio-inspired Computing: Theories and Applications. BIC-TA 2018. Communications in Computer and Information Science, vol 951. Springer, Singapore. https://doi.org/10.1007/978-981-13-2826-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2826-8_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2825-1

  • Online ISBN: 978-981-13-2826-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics