Abstract
Chaotic circuit is an effective tool to observe and analyze chaotic phenomena, to verify chaos theory and to promote its application. The recent research work focuses on how to better analyze the basic circuit characteristics and to design application circuits. In this paper, a new chaotic system is proposed, whose dynamical behaviors are discussed with the change of the parameters in detail. The specific effects of different parameters on the system are also discussed. By adjusting these parameters of the proposed circuit, this nonlinear circuit can produce the different dynamical behaviors, such as, hyper chaotic behavior, periodic behavior, transient behavior, etc. In addition, the simulation results of Matlab can further prove the feasibility of this circuit.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lü, J.G.: Chaotic dynamics of the fractional-order Lü system and its synchronization. Phys. Lett. A 354, 483–489 (2006)
Lü, J.H., Chen, G.R., Cheng, D.Z.: A new chaotic system and beyond: the generalized Lorenz-like system. Int. J. Bifurc. Chaos 14, 1507–1537 (2004)
Lü, J.G.: Generating chaos via decentralized linear state feedback and a class of nonlinear functions. Chaos Solitons Frac. 25, 403–413 (2005)
Feki, M.: Observer-based synchronization of chaotic systems with unknown nonlinear function. Chaos Solitons Frac. 39, 981–990 (2009)
Wan, Z.C.: Synchronization between two different chaotic systems using nonlinear control function. Microelectr. Comput. 25, 52–55 (2008)
Chua, L.O., Kang, S.M.: Memristive device and systems. IEEE Proc. 64, 209–223 (1976)
Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmosph. Sci. 20, 130–141 (1963)
Li, Q., Hu, S., Tang, S., Zeng, G.: Hyperchaos and horseshoe in a 4D memristive system with a line of equilibria and its implementation. Int. J. Circ. Theor. Appl. 42, 1172–1188 (2013)
Iu, H.H.C., Yu, D.S., Fitch, A.L., Sreeram, V., Chen, H.: Controlling chaos in a memristor based circuit using a twint notch filter. IEEE Trans. Circ. Syst. 58, 1337–1344 (2011)
Bao, B.C., Ma, Z.H., Xu, J.P., Liu, Z., Xu, Q.: A simple memristor chaotic circuit with complex dynamics. Int. J. Bifurc. Chaos 21, 2629–2645 (2011)
Buscarino, A., Fortuna, L., Frasca, M., Gambuzza, L.: A chaotic circuit based on Hewlett-Packard memristor. Chaos 22, 23–36 (2012)
Diaz, G., Coimbra, C.F.M.: Nonlinear dynamics and control of a variable order oscillator with application to the Van der Pol equation. Nonlinear Dyn. 56, 145–157 (2009)
Vincent, U.E., Nbendjo, B.R.N., Ajayi, A.A., Njah, A.N., Mcclintock, P.V.E.: Hyperchaos and bifurcations in a driven Van der Pol-duffing oscillator circuit. Int. J. Dyn. Control 3, 363–370 (2015)
Matouk, A.E.: Chaos, feedback control and synchronization of a fractional-order modified autonomous Van der Pol-Duffing circuit. Chaos Soliton Fract 16, 975–986 (2011)
Jia, Q.: Hyperchaos generated from the Lorenz chaotic system and its control. Phys. Lett. A 336, 217–222 (2007)
Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57, 397–398 (1976)
Li, C., Chen, G.: Chaos in the fractional order Chen system and its control. Commun. Nonlinear Sci. 22, 549–554 (2004)
Bi, Q.S., Ma, R., Zhang, Z.D.: Bifurcation mechanism of the bursting oscillations in periodically excited dynamical system with two time scales. Nonlinear Dyn. 79, 101–110 (2015)
Radwan, A.G., Soliman, A.M., El-Sedeek, A.L.: An inductorless CMOS realization of Chua’s circuit. Chaos Solitons Frac. 18, 149–158 (2003)
Radwan, A.G., Soliman, A.M., El-Sedeek, A.L.: MOS realization of the conjectured simplest chaotic equation. Circ. Syst. Signal Proc. 22, 277–285 (2003)
Bao, B.C., Liu, Z., Xu, J.P.: Steady periodic memristor oscillator with transient chaotic behaviors. Electr. Lett. 46, 237–238 (2010)
Bao, B.C., Ma, Z.H., Xu, J.P., Liu, Z., Xu, Q.: A simple memristor chaotic circuit with complex dynamics. Int. J. Bifurc. Chaos 21, 2629–2645 (2011)
Fitch, A.L., Yu, D., Iu, H., Sreeram, V.: Hyperchaos in a memristor-based modified canonical Chua’s circuit. Int. J. Bifurc. Chaos 22, 125–133 (2015)
Liu, H., Kadir, A., Li, Y.: Asymmetric color pathological image encryption scheme based on complex hyper chaotic system. Int. J. Light Electr. Optics 127, 5812–5819 (2016)
Tokida, C., Saito, T.: On a synchronization phenomena in third order autonomous chaotic circuit. Am. J. Phys. 72, 379–385 (2012)
Kilic, R., Saracoglu, O.G., Yildirim, F.: Experimental observations of EMI effects in autonomous Chuas chaotic circuit. Chaos Solitons Frac. 32, 1168–1177 (2007)
Koliopanos, C.L., Kyprianidis, I.M., Stouboulos, I.N., Anagnostopoulos, A.N., Magafas, L.: Chaotic behaviour of a fourth-order autonomous electric circuit. Chaos Solitons Fract. 16, 173–182 (2003)
Sun, J.W., Wu, Y.Y., Cui, G.Z.: Finite-time Real combination synchronization of three complex-variable chaotic systems with unknown parameters via sliding mode control. Nonlinear Dyn. 88, 1677–1690 (2017)
Sun, J.W., Wang, Y., Wang, Y.F., Shen, Y.: Finite-time synchronization between two complex-variable chaotic systems with unknown parameters via nonsingular tterminal sliding mode control. Nonlinear Dyn. 85, 1105–1117 (2016)
Sun, J.W., Shen, Y.: Quasi-ideal Memory System. IEEE Trans. Cyber. 45, 1353–1362 (2015)
Acknowledgments
The work is supported by the State Key Program of National Natural Science of China (Grant No. 61632002), the National Natural Science of China (Grant Nos. 61572446, 61472372, 61603347, 61603348, 61602424), Science and Technology Innovation Talents Henan Province (Grant No. 174200510012), Research Program of Henan Province (Grant Nos. 15IRTSTHN012, 162300410220, 17A120005), and the Science Foundation of for Doctorate Research of Zhengzhou University of Light Industry (Grant No. 2014BSJJ044).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Sun, J., Li, N., Wang, Y. (2017). Dynamical Analysis of a Novel Chaotic Circuit. In: He, C., Mo, H., Pan, L., Zhao, Y. (eds) Bio-inspired Computing: Theories and Applications. BIC-TA 2017. Communications in Computer and Information Science, vol 791. Springer, Singapore. https://doi.org/10.1007/978-981-10-7179-9_27
Download citation
DOI: https://doi.org/10.1007/978-981-10-7179-9_27
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-7178-2
Online ISBN: 978-981-10-7179-9
eBook Packages: Computer ScienceComputer Science (R0)