A Hybrid PSO-Fuzzy Based Algorithm for Clustering Indian Stock Market Data | SpringerLink
Skip to main content

A Hybrid PSO-Fuzzy Based Algorithm for Clustering Indian Stock Market Data

  • Conference paper
  • First Online:
Computational Intelligence, Communications, and Business Analytics (CICBA 2017)

Abstract

Partitioning data points into several homogeneous sets is known as clustering. This paper proposes a hybrid clustering algorithm based on Different Length Particle Swarm Optimization (DPSO) algorithm and is applied to a study of Indian stock market volatility. The heterogeneous data items of stock market are fuzzified to homogeneous data items for efficient clustering. Each data item has 7 attributes. Three evaluation criteria are used for computing the fitness of particles of the clustering algorithm. Different length particles are encoded in the PSO to minimize the user interaction with the program hence also the running time. The single point crossover operator of Genetic Algorithm is used here for differencing between two particles. The performance of the proposed algorithm is demonstrated by clustering stock market data of size 2014 \(\times \) 7. The results are compared with some well known existing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Chaudhuri, T.D., Ghosh, I.: Using clustering method to understand indian stock market volatility. Commun. Appl. Electron. (CAE) 2(6), 35–44 (2015). Foundation of Computer Science FCS, New York, USA

    Article  Google Scholar 

  2. Goldberg, D.E.: Genetic Algorithm in Search, Optimization and Machine Learning. Addison-Wesley, Boston (1989)

    MATH  Google Scholar 

  3. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, MHS 1995, pp. 39–43. IEEE (1995). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=494215

  4. Esmin, A.A.A., Pereira, D.L., de Arajo, F.P.A.: Study of different approach to clustering data by using particle swarm optimization algorithm. In: Proceedings of the IEEE World Congress on Evolutionary Computation (CEC 2008), Hong Kong, China, pp. 1817–1822, June 2008

    Google Scholar 

  5. Gose, E., Johnsonbough, R., Jost, S.: Pattern Recognition and Image Analysis. Prentice-Hall, Upper Saddle River (1996)

    Google Scholar 

  6. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1992)

    Google Scholar 

  7. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference on Neural Network, Perth, Australia, pp. 1942–1948 (1995)

    Google Scholar 

  8. López, J., Lanzarini, L., Giusti, A.: VarMOPSO: multi-objective particle swarm optimization with variable population size. In: Kuri-Morales, A., Simari, G.R. (eds.) IBERAMIA 2010. LNCS (LNAI), vol. 6433, pp. 60–69. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16952-6_7

    Chapter  Google Scholar 

  9. Katari, V., Ch, S., Satapathy, R., Ieee, M., Murthy, J., Reddy, P.P.: Hybridized improved genetic algorithm with variable length chromosome for image clustering abstract. Int. J. Comput. Sci. Netw. Secur. 7(11), 121–131 (2007)

    Google Scholar 

  10. Maulik, U., Bandyopadhyay, S.: Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification. IEEE Trans. Geosci. Remote Sens. 41(5), 1075–1081 (2003)

    Article  Google Scholar 

  11. Mukhopadhyay, S., Mandal, J.K.: Adaptive median filtering based on unsupervised classification of pixels. In: Handbook of Research on Computational Intelligence for Engineering, Science and Business. IGI Global, 701 E. Chocolate Ave., Hershey, PA 17033, USA (2013)

    Google Scholar 

  12. Mukhopadhyay, S., Mandal, J.K.: Denoising of digital images through pso based pixel classification. Central Eur. J. Comput. Sci. 3(4), 158–172 (2013). Springer Vienna

    Google Scholar 

  13. Mukhopadhyay, S., Mandal, P., Pal, T., Mandal, J.K.: Image clustering based on different length particle swarm optimization (DPSO). In: Satapathy, S.C., Biswal, B.N., Udgata, S.K., Mandal, J.K. (eds.) Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014. AISC, vol. 327, pp. 711–718. Springer, Cham (2015). doi:10.1007/978-3-319-11933-5_80

    Google Scholar 

  14. Omran, M., Engelbrecht, A., Salman, A.: Particle swarm optimization method for image clustering. Int. J. Pattern Recognit Artif Intell. 19, 297–322 (2005)

    Article  Google Scholar 

  15. Pakhira, M.K., Bandyopadhyay, S., Maulik, U.: Validity index for crisp and fuzzy clusters. Pattern Recogn. 37(3), 487–501 (2004). http://www.sciencedirect.com/science/article/pii/S0031320303002838

    Article  MATH  Google Scholar 

  16. Pakhira, M.K., Bandyopadhyay, S., Maulik, U.: A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification. Fuzzy Sets Syst. 155(2), 191–214 (2005). http://www.sciencedirect.com/science/article/pii/S0165011405001661

    Article  MathSciNet  Google Scholar 

  17. Qiu, M., Liu, L., Ding, H., Dong, J., Wang, W.: A new hybrid variable-length ga and pso algorithm in continuous facility location problem with capacity and service level constraints. In: IEEE/INFORMS International Conference on Service Operations, Logistics and Informatics, SOLI 2009, pp. 546–551, July 2009

    Google Scholar 

  18. Somnath Mukhopadhyay, J.K.M., Pal, T.: Variable length PSO-based image clustering for image denoising. In: Handbook of Research on Natural Computing for Optimization Problems. IGI Global, 701 E. Chocolate Ave., Hershey, PA 17033, USA (2016)

    Google Scholar 

  19. Srikanth, R., George, R., Warsi, N., Prabhu, D., Petry, F., Buckles, B.: A variable-length genetic algorithm for clustering and classification. Pattern Recogn. Lett. 16(8), 789–800 (1995). http://www.sciencedirect.com/science/article/pii/016786559500043G

    Article  Google Scholar 

  20. Tan, P., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Education, Boston (2006)

    Google Scholar 

  21. Wong, M.T., He, X., Yeh, W.C.: Image clustering using particle swarm optimization. In: 2011 IEEE Congress on Evolutionary Computation (CEC), pp. 262–268, June 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somnath Mukhopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Mukhopadhyay, S., Chaudhuri, T.D., Mandal, J.K. (2017). A Hybrid PSO-Fuzzy Based Algorithm for Clustering Indian Stock Market Data. In: Mandal, J., Dutta, P., Mukhopadhyay, S. (eds) Computational Intelligence, Communications, and Business Analytics. CICBA 2017. Communications in Computer and Information Science, vol 776. Springer, Singapore. https://doi.org/10.1007/978-981-10-6430-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6430-2_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6429-6

  • Online ISBN: 978-981-10-6430-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics