Segmentation of Bengali Handwritten Conjunct Characters Through Structural Disintegration | SpringerLink
Skip to main content

Segmentation of Bengali Handwritten Conjunct Characters Through Structural Disintegration

  • Conference paper
  • First Online:
Computational Intelligence, Communications, and Business Analytics (CICBA 2017)

Abstract

Substantial size of convoluted conjunct characters in Bengali language makes the recognition process burdensome. In this paper, we propose a structural disintegration based segmentation technique that fragments the conjunct characters into discernible shapes for better recognition accuracy. We use a set of structure based segmentation rules that bifurcates the characters into discernible shape components. The bifurcation is done by finding the touching region where two basic shapes coincide to form a conjunct character. The proposed method has been tested on a data set of Bengali handwritten conjunct characters efficiently. In future, we will continue our work to incorporate it as a prominent preprocessing step for Bengali optical character recognition system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Omidyeganeh, M., Azmi, R., Nayebi, K., Javadtalab, A.: A new method to improve multi font Farsi/Arabic character segmentation results: using extra classes of some character combinations. In: Cham, T.-J., Cai, J., Dorai, C., Rajan, D., Chua, T.-S., Chia, L.-T. (eds.) MMM 2007. LNCS, vol. 4351, pp. 670–679. Springer, Heidelberg (2006). doi:10.1007/978-3-540-69423-6_65

    Chapter  Google Scholar 

  2. Wshah, S., Shi, Z., Govindaraju, V.: Segmentation of Arabic handwriting based on both contour and skeleton segmentation. In: International Conference on Document Analysis and Recognition, pp. 793–797 (2009)

    Google Scholar 

  3. Tan, J., Lai, J.H., Wang, C.D., Wang, W.X., Zuo, X.X.: A new handwritten character segmentation method based on nonlinear clustering. Neurocomputing 89, 213–219 (2012)

    Article  Google Scholar 

  4. Khan, A.R., Mohammad, Z.: A simple segmentation approach for unconstrained cursive handwritten words in conjunction with the neural network. Int. J. Image Process. 2(3), 29–35 (2008)

    MathSciNet  Google Scholar 

  5. Lee, H., Verma, B.: Binary segmentation algorithm for English cursive handwriting recognition. Pattern Recogn. 45(4), 1306–1317 (2012)

    Article  Google Scholar 

  6. Kumar, M., Jindal, M.K., Sharma, R.K.: Segmentation of isolated and touching characters in offline handwritten Gurmukhi script recognition. Int. J. Inf. Technol. Comput. Sci. 6(2), 58–63 (2014)

    Google Scholar 

  7. Bag, S., Bhowmick, P., Harit, G., Biswas, A.: Character segmentation of handwritten Bangla text by vertex characterization of isothetic covers. In: Proceedings of the National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics, pp. 21–24 (2011)

    Google Scholar 

  8. Sarkar, R., Das, N., Basu, S., Kundu, M., Nasipuri, M., Basu, D.K.: A two-stage approach for segmentation of handwritten Bangla word images. In: Proceedings of the International Conference on Frontiers in Handwriting Recognitions, pp. 403–408 (2008)

    Google Scholar 

  9. Pal, U., Wakabayashi, T., Kimura, F.: Handwritten Bangla compound character recognition using gradient feature. In: Proceedings of the International Conference on Information Technology, pp. 208–213 (2007)

    Google Scholar 

  10. Das, N., Basu, S., Sarkar, R., Kundu, M., Nasipuri, M., Basu, D.K.: Handwritten Bangla compound character recognition: potential challenges and probable solution. In: Proceedings of the Indian International Conference on Artificial Intelligence, pp. 1901–1913 (2009)

    Google Scholar 

  11. Das, N., Das, B., Sarkar, R., Basu, S., Kundu, M., Nasipuri, M.: Handwritten Bangla basic and compound character recognition using MLP and SVM classifier. J. Comput. 2(2), 109–115 (2010)

    Google Scholar 

  12. Das, N., Acharya, K., Sarkar, R., Basu, S., Kundu, M., Nasipuri, M.: A novel GA-SVM based multistage approach for recognition of handwritten Bangla compound characters. In: Satapathy, S.C., Avadhani, P.S., Abraham, A. (eds.) Proceedings of the InConINDIA 2012. AISC, vol. 132, pp. 145–152. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27443-5_17

    Google Scholar 

  13. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  14. Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236–239 (1984)

    Article  Google Scholar 

  15. Rosenfeld, A., Kak, A.: Digital Picture Processing, vol. 1 and 2, 2nd edn. Academic Press, New York (1982)

    MATH  Google Scholar 

  16. Das, N., Acharya, K., Sarkar, R., Basu, S., Kundu, M., Nasipuri, M.: A benchmark image database of isolated Bangla handwritten compound characters. Int. J. Doc. Anal. Recogn. 17(4), 413–431 (2014)

    Article  Google Scholar 

  17. Bag, S., Harit, G.: Skeletonizing character images using a modified medial axis-based strategy. Int. J. Pattern Recognit. Artif. Intell. 25(7), 1035–1054 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Pramanik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Pramanik, R., Bag, S. (2017). Segmentation of Bengali Handwritten Conjunct Characters Through Structural Disintegration. In: Mandal, J., Dutta, P., Mukhopadhyay, S. (eds) Computational Intelligence, Communications, and Business Analytics. CICBA 2017. Communications in Computer and Information Science, vol 776. Springer, Singapore. https://doi.org/10.1007/978-981-10-6430-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6430-2_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6429-6

  • Online ISBN: 978-981-10-6430-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics