Abstract
Long-term object tracking is key for a higher level of semantic interpretation of driving environment. One of the state-of-the-art approaches for long-term tracking is Tracking-Learning-Detection (TLD), which, however, suffers from variability of on-road objects and moving cluttered background. This paper presents a long-term object tracking method for intelligent driving based on Stixel World to address the drifting problem. First, this method adopts TLD framework, and integrates intensity and depth cues into the detector and learning component. Next, this method introduces Stixel World for compact medium-level representation of the 3D world, and Attention Guiding Filter (AGF) is proposed to focus on relevant areas in the image. Experiments in real traffic scene show the outstanding long-term tracking performance for intelligent driving.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Matthews, L., Ishikawa, T., Baker, S.: The template update problem. IEEE Trans. Pattern Anal. Mach. Intell. 26, 810 (2004)
Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1409 (2012)
Xue, L., Yang, M., Dong, Y., Wang, C., Wang, B.: TLD based real-time weak traffic participants tracking for intelligent vehicles. In: 5th Workshop on Planning, Perception and Navigation for Intelligent Vehicles (PPNIV 2013) (2013)
Hirschmuller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, p. 807 (2005)
Badino, H., Franke, U., Pfeiffer, D.: The Stixel World - a compact medium level representation of the 3D-world. In: Denzler, J., Notni, G., Süße, H. (eds.) DAGM 2009. LNCS, vol. 5748, pp. 51–60. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03798-6_6
Franke, U., Pfeiffer, D., Rabe, C., Knoeppel, C., Enzweiler, M., Stein, F., Herrtwich, R.G.: Making bertha see. In: 2013 IEEE International Conference on Computer Vision Workshops (ICCVW), Sydney, NSW, vol. 214 (2013)
3DV-E system. http://vislab.it/products/3dv-e-system/
Camellini, G., Felisa, M., Medici, P., Zani, P., Gregoretti, F., Passerone, C., Passerone, R.: 3DV — An embedded, dense stereovision-based depth mapping system (2014) 1435 p.
Labayrade, R., Aubert, D., Tarel, J.P.: Real time obstacle detection in stereovision on non flat road geometry through “v-disparity” representation. In: Intelligent Vehicle Symposium, vol. 2, p. 646. IEEE (2002)
Benenson, R., Mathias, M., Timofte, R., Gool, L.: Fast stixel computation for fast pedestrian detection. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012. LNCS, vol. 7585, pp. 11–20. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33885-4_2
Acknowledgements
This work was supported by the National Natural Science Foundation of China (91420101), National Magnetic Confinement Fusion Science Program (2012GB102002).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Deng, L., Yang, M., Wang, C., Wang, B. (2017). Stixel World Based Long-Term Object Tracking for Intelligent Driving. In: Sun, F., Liu, H., Hu, D. (eds) Cognitive Systems and Signal Processing. ICCSIP 2016. Communications in Computer and Information Science, vol 710. Springer, Singapore. https://doi.org/10.1007/978-981-10-5230-9_12
Download citation
DOI: https://doi.org/10.1007/978-981-10-5230-9_12
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-5229-3
Online ISBN: 978-981-10-5230-9
eBook Packages: Computer ScienceComputer Science (R0)