A Heuristic Framework for Priority Based Nurse Scheduling | SpringerLink
Skip to main content

A Heuristic Framework for Priority Based Nurse Scheduling

  • Chapter
  • First Online:
Advanced Computing and Systems for Security

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 567))

  • 539 Accesses

Abstract

Nurse Scheduling Problem is traditionally studied as a multi objective problem which aims at an optimum scheduling of nurse assignment to patients in a hospital. Remote healthcare is involved with providing quality care and medical assistance to patients based on remote monitoring. This paper presents an in-depth study of nurse scheduling algorithms. This study is followed with a description of the existing logics and the open issues. It also presents a heuristic framework with new features and a variable wait time based multi-parametric cost function for managing the dynamic NSP associated to remote healthcare.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burke, K.E., Li, J., Qu, R.: Pareto-based optimization for multi-objective nurse scheduling. In: Boros, E. (ed.) Annals of Operation Research, vol. 196, no. 1, pp. 91–109. Springer, US (2012). doi:10.1007/s10479-009-0590-8

  2. Sarkar, P., Bhattacharya, U., Chaki, R., Sinha, D.: A priority based nurse scheduling algorithm for continuous remote patient monitoring. In: 4th World Conference on Applied Sciences, Engineering and Technology, pp. 046–053 (2015). ISBN 13: 978-81-930222-1-4

    Google Scholar 

  3. Sarkar, P., Sinha, D.: An approach to continuous pervasive care of remote patients based on priority based assignment of nurse. In: Saeed, K., Snášel, V. (eds.) 13th IFIP TC8 International Conference Computer Information Systems and Industrial Management, November 2014. CISIM 2014, LNCS 8838, pp. 327–338. Springer ISBN 978-3-662-45236-3, Online ISBN 978-3-662-45237-0. doi:10.1007/978-3-662-45237-0_31.Print

  4. Métivier, J.-P., Boizumault, P., Loudni, S.: Solving nurse rostering problems using soft global constraints. In: Gent, I.P. (eds.) CP 2009, LNCS, vol. 5732, pp. 73–87. Springer, Berlin, Heidelberg (2009). doi:10.1007/978-3-642-04244-7_9

  5. Moz, M., Pato, V.M.: A genetic algorithm approach to a nurse rerostering problem. Comput. Oper. Res. 34, 667–691 (2007). doi:10.1016/j.cor.2005.03.019

  6. Lim, J.G. et al.: Multi-objective nurse scheduling models with patient workload and nurse preferences. management. In: Bresciani, S. (ed.) vol. 2, no. 5, pp. 149–160. Scientific and Academic Publishing, p-ISSN: 2162-9374 e-ISSN: 2162-8416 (2012). doi:10.5923/j.mm.20120205.03

  7. Trinkoff, Alison M., et al.: Nurses’ work schedule characteristics, nurse staffing, and patient mortality. Nurs. Res. 60(1), 1–8 (2011). doi:10.1097/NNR.0b013e3181fff15d. January/February

    Article  Google Scholar 

  8. Aickelin, U., Dowsland, A.K.: An indirect genetic algorithm for a nurse scheduling problem. Comput. Oper. Res. Elsevier. 31(5), 761–778 (2004). doi:10.1016/S0305-0548(03)00034-0

    Article  MATH  Google Scholar 

  9. Dowsland, K.A., Thompson, J.M.: Solving a nurse scheduling problem with knapsacks, networks and tabu search. In: Crook, J., Archibald, T. (eds.) Journal of the Operational Research Society, vol. 51, no. 7, pp. 825–833. Springer (2000). doi:10.1057/palgrave.jors.2600970

  10. Miller, H., Pierskalla, P.W., Rath J.: Nurse Scheduling using Mathematical Programming, Operations Research, vol. 24, no. 5 (1976). doi:10.1287/opre.24.5.857

  11. Warner, M., Prawda, J.A.: Mathematical programming model for scheduling nursing personnel in a hospital. Management Science, vol. 19, no. 4, pp. 411–422 (1972). Application Series, Part 1. Published by: INFORMS

    Google Scholar 

  12. Howell, J.P.: Cyclical scheduling of nursing personnel. Hospitals Pubmed. 40, 77–85 (1966)

    Google Scholar 

  13. Beasley, J.E., Cao, B.: A dynamic programming based algorithm for the crew scheduling problem. Comput. Oper. Res. Elsevier. 25(7–8), 567–582 (1998). doi:10.1016/S0305-0548(98)00019-7

    Article  MATH  Google Scholar 

  14. Jaumard, B., Semet, F., Vovor, T.: A generalized linear programming model for nurse scheduling. Eur. J. Oper. Res. Elsevier. 107(1), 1–18 (1998). doi:10.1016/S0377-2217(97)00330-5

    Article  MATH  Google Scholar 

  15. Satheesh kumar, B., Naresh kumar, S., Kumaraghuru, S.: Linear programming applied to nurses shifting problems for six consecutive days per week. Int. J. Curr. Res. 6(03), 5862–5864. ISSN (Online): 2319-7064, March (2014)

    Google Scholar 

  16. Aickelin, U., White, P.: Building better nurse scheduling algorithms. In: Boros, E. (ed.) Annals of Operational Research, vol 128, no. 1, pp. 159–177. Springer (2004). p-SSN: 0254-5330, e-ISSN: 1572-9338

    Google Scholar 

  17. Fan, N., Mujahid, S., Zhang, J., Georgiev, P.: Nurse scheduling problem: an integer programming model with a practical application. In: Paradalos, P.M. et al. (ed.) Systems Analysis Tools for Better Health Care Delivery, Springer Optimization and Its Applications, vol. 74, pp. 65–98 (2012). doi:10.1007/978-1-4614-5094-8_5

  18. Choy, M., Cheong L.F.M.: A Flexible Integer Programming framework for Nurse Scheduling. CoRR (2012). http://dblp.uni-trier.de/db/journals/corr/corr1210.html#abs-1210-3652. BibTeX key:journals/corr/abs-1210-3652

  19. Maenhout, B., Vanhoucke, M.: Branching strategies in a branch-and-price approach for a multiple objective nurse scheduling problem. In: Burke, E. (eds.) Journal of Scheduling, vol. 13, no. 1,pp. 77–93. Springer, US (2010). doi:10.1007/s10951-009-0108-x

  20. Darmoni, S.J., et al.: Horoplan: computer-assisted nurse scheduling using constraint-based programming. J. Soc. Health Care Pubmed. 5, 41–54 (1995)

    Google Scholar 

  21. Cheng, B.M.W., Lee, J.H.M., Wu, J.C.K.: A nurse rostering system using constraint programming and redundant modeling. IEEE Trans. Inf. Technol. Biomed. 1(1), 44–54 (1997). 10.1.1.48.2749

    Article  Google Scholar 

  22. Chung Wong, G.Y., Chun, W.H.: Nurse rostering using constraint programming and meta-level reasoning. In: Hung, P.W.H., Hinde, C.J., Ali, M. (eds.) IEA/AIE 2003, LNAI, pp. 712–721 (2003)

    Google Scholar 

  23. Santos, D., Fernandes, P., Lopes, H.C., Oliveira, E.: A weighted constraint optimization approach to the nurse scheduling problem. In: IEEE 18th International Conference on Computational Science and Engineering, pp. 233–239 (2015). doi:10.1109/CSE.2015.46

  24. Constantino, A.A., Landa-Silva, D, Melo, E.L., Xavier de Mendonc, D.F., Rizzato, D.B., Rom˜ao, W.: A heuristic algorithm based on multi assignment procedures for nurse scheduling. In: Boros, E. (ed.) Journal, Annals of Operations Research, vol. 218, no. 1, pp. 165–183. Springer, US (2014). doi:10.1007/s10479-013-1357-9

  25. Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization. IEEE Trans. Evol. Comput. 4(3), 284–294 (2000). doi:10.1109/4235.873238

  26. Bai, R., Burke, K.E., Kendall, G., Li, J., McCollum, B.: A hybrid evolutionary approach to the nurse rostering problem. IEEE Trans. Evol. Comput. 14(4), 580–590 (2010). doi:10.1109/TEVC.2009.2033583. Aug

    Article  Google Scholar 

  27. Brucker, P., Burke Edmund, K., Curtois, T., Qu, R., Berghe, V.G.: A shift sequence based approach for nurse scheduling and a new benchmark dataset. In: Laguna, M. (ed.) Journal of Heuristics August 2010, vol. 16, no. 4, pp. 559–573. Springer (2010). doi:10.1007/s10732-008-9099-6

  28. Li, J., Aickelin, U.: Bayesian optimisation algorithm for nurse scheduling. In: Pelikan, M., Sastry, K., Cantu-Paz, E. (eds.) Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications (Studies in Computational Intelligence), Chapter 17, pp. 315–332. Springer (2006)

    Google Scholar 

  29. Maenhout, B., Vanhoucke, M.: An electromagnetic meta-heuristic for the nurse scheduling problem. In: Laguna, M. (ed.) Journal of Heuristics, vol. 13, no. 4, pp 359–385. Springer (2007) doi:10.1007/s10732-007-9013-7

  30. Jaszkiewicz, A.: A metaheuristic approach to multiple objective nurse scheduling. Found. Comput. Decis. Sci. 22(3), 169–184 (1997)

    MATH  Google Scholar 

  31. Leksakul, K., Phetsawat, S.: Nurse scheduling using genetic algorithm. hindawi publishing corporation. Math. Probl. Eng. Article ID 246543, 16 (2014). http://dx.doi.org/10.1155/2014/246543

  32. Moz, M., Pato, M.V.: A genetic algorithm approach to a nurse rerostering problem. Comput. Oper. Res. Elsevier. 34(3), 667–691 (2007). doi:10.1016/j.cor.2005.03.019

    Article  MATH  Google Scholar 

  33. Kim, S.-J., Ko, Y.-W., Uhmn, S., Kim, J.: A strategy to improve performance of genetic algorithm for nurse scheduling problem. Int. J. Soft. Eng. Appl. 8(1), 53–62 (2014). 10.14257/Ijsela.14/8.1.05

    Google Scholar 

  34. Tsai, C., Li, A.H.S.: A two-stage modeling with genetic algorithms for the nurse scheduling problem. Expert Syst. Appl. 36, 9506–9512 (2009). doi:10.1016/j.eswa.2008.11.049

    Article  Google Scholar 

  35. Moscato, P., Cotta, C.: A modern introduction to memetic algorithms. Chapter 6. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics, International Series in Operations Research and Management Science, vol. 146, pp. 141–183. Springer, US (2010). doi:10.1007/978-1-4419-1665-56

  36. Burke, K.E., Li, J., Qu, R.: A hybrid model of integer programming and variable neighbourhood search for highly-constrained nurse rostering problems. Eur. J. Oper. Res. Elsevier. 203(2), 484–493 (2010). doi:10.1016/j.ejor.2009.07.036

  37. Todorovic, N., Petrovic, S.: Bee colony optimization algorithm for nurse rostering. IEEE Trans. Syst. Man Cybern. Syst. 43(2), 467–473 (2013). doi:10.1109/TSMCA.2012.2210404

    Article  Google Scholar 

  38. Ghasemi, S., Sajadi, S.M., Vahdani, H.: Proposing a heuristic algorithm for the nurse scheduling in hospital emergency department (Case study: Shahid Beheshti Hospital). Int. J. Eng. Sci. 3(9), 85–93 (2014). ISSN: 2306-6474

    Google Scholar 

  39. Ko, Y.W., Kim, D.H., Jeong, M., Jeon, W., Uhmn, S., Kim, J.: An efficient method for nurse scheduling problem using simulated annealing. In: The 5th International Conference on Advanced Science and Technology, AST 2013, vol. 20, pp. 82–85. ASTL (2013)

    Google Scholar 

  40. Ko, Y.W., Kim, D.H., Jeong, M., Jeon, W., Uhmn, S., Kim J.: An improvement technique for simulated annealing and its application to nurse scheduling problem. Int. J. Soft. Eng. Appl. 7(4), 269–277 (2013)

    Google Scholar 

  41. Stepanov, A.: On the Borel-Cantelli Lemma. Department of Mathematics, Izmir University of Economics, Turkey. AMS 2000 Subject Classification: 60G70, 62G30 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramita Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sarkar, P., Chaki, R., Sinha, D. (2017). A Heuristic Framework for Priority Based Nurse Scheduling. In: Chaki, R., Saeed, K., Cortesi, A., Chaki, N. (eds) Advanced Computing and Systems for Security. Advances in Intelligent Systems and Computing, vol 567. Springer, Singapore. https://doi.org/10.1007/978-981-10-3409-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3409-1_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3408-4

  • Online ISBN: 978-981-10-3409-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics