Mathematical Modeling of Specific Fuel Consumption Using Response Surface Methodology for CI Engine Fueled with Tyre Pyrolysis Oil and Diesel Blend | SpringerLink
Skip to main content

Mathematical Modeling of Specific Fuel Consumption Using Response Surface Methodology for CI Engine Fueled with Tyre Pyrolysis Oil and Diesel Blend

  • Conference paper
  • First Online:
Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 515))

Abstract

In this study, response surface methodology (RSM)-based prediction model was prepared for specific fuel consumption (SFC) as a response. A regression model was designed to predict SFC using RSM with central composite rotatable design (CCRD). In the development of regression models, injection timing, compression ratio, injection pressure, and engine load were considered as controlled variables. Injection pressure and compression ratio were observed as the most influencing variables for the SFC. The predicted SFC values and the succeeding verification experiments under the optimal conditions established the validity of the regression model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atmanlı, A., Yüksel, B., İleri, E., & Karaoglan, A. D. (2015). Response surface methodology based optimization of diesel–n-butanol–cotton oil ternary blend ratios to improve engine performance and exhaust emission characteristics. Energy Conversion and Management90, 383–394.

    Google Scholar 

  2. Pandian, M., Sivapirakasam, S. P., & Udayakumar, M. (2011). Investigation on the effect of injection system parameters on performance and emission characteristics of a twin cylinder compression ignition direct injection engine fuelled with pongamia biodiesel–diesel blend using response surface methodology. Applied Energy, 88(8), 2663–2676.

    Google Scholar 

  3. Hirkude, J. B., & Padalkar, A. S. (2014). Performance optimization of CI engine fuelled with waste fried oil methyl ester-diesel blend using response surface methodology. Fuel, 119, 266–273.

    Google Scholar 

  4. Hirkude, J. B., & Padalkar, A. S. & Vedartham D. (2014), Investigations on the effect of waste fried oil methyl ester blends and load on performance and smoke opacity of diesel engine using research surface methodology. Energy Procedia 54 (2014) 606–614.

    Google Scholar 

  5. Silva, G. F., Camargo, F. L., & Ferreira, A. L. (2011). Application of response surface methodology for optimization of biodiesel production by transesterification of soybean oil with ethanol. Fuel Processing Technology, 92(3), 407–413.

    Google Scholar 

  6. Rashid, U., Anwar, F., Ashraf, M., Saleem, M., & Yusup, S. (2011). Application of response surface methodology for optimizing transesterification of Moringa oleifera oil: Biodiesel production. Energy Conversion and Management, 52(8), 3034–3042.

    Google Scholar 

  7. Patel, M. H. M., & Patel, T. M. (2012, June). Performance analysis of single cylinder diesel engine fuelled with Pyrolysis oil-diesel and its blend with Ethanol. In International Journal of Engineering Research and Technology (Vol. 1, No. 4 (June-2012)). ESRSA Publications.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saumil C Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Patel, S.C., Brahmbhatt, P.K. (2017). Mathematical Modeling of Specific Fuel Consumption Using Response Surface Methodology for CI Engine Fueled with Tyre Pyrolysis Oil and Diesel Blend. In: Satapathy, S., Bhateja, V., Udgata, S., Pattnaik, P. (eds) Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications . Advances in Intelligent Systems and Computing, vol 515. Springer, Singapore. https://doi.org/10.1007/978-981-10-3153-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3153-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3152-6

  • Online ISBN: 978-981-10-3153-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics