A Robust Scheme for Extraction of Text Lines from Handwritten Documents | SpringerLink
Skip to main content

A Robust Scheme for Extraction of Text Lines from Handwritten Documents

  • Conference paper
  • First Online:
Proceedings of International Conference on Computer Vision and Image Processing

Abstract

Considering the vast collection of handwritten documents in various archives, research studies for their automatic processing have major impact in the society. Line segmentation from images of such documents is a crucial step. The problem is more difficult for documents of major Indian scripts such as Bangla because a large number of its characters have either ascender or descender or both and the majority of its writers are accustomed in extremely cursive handwriting. In this article, we describe a novel strip based text line segmentation method for handwritten documents of Bangla. Moreover, the proposed method has been found to perform efficiently on English and Devanagari handwritten documents. We conducted extensive experimentations and its results show the robustness of the proposed approach on multiple scripts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mullick, K., Banerjee, S., and Bhattecharya, U.: An Efficient Line Segmentation Approach for Handwritten Bangla Document Image. Eighth International Conference on Advences in pattern Recognition (ICAPR), 1–6 (2015)

    Google Scholar 

  2. Alaei, A., Pal, U., and Nagabhushan, P.: A New Scheme for Unconstrained Handwritten Text-Line Segmentation. Pattern Recognition. 44(4), 917–928, (2011)

    Article  MathSciNet  Google Scholar 

  3. Papavassiliou, V., Stafylakis, T., Katsouros, V., Carayannis, G.: Handwritten document image segmentation into text lines and words. Pattern Recognition. 147, 369–377 (2010)

    Article  MATH  Google Scholar 

  4. Shi, Z., Seltur, S., and Govindaraju, V.: A Steerable Directional Local Profile Technique for Extraction of Handwritten Arabic Text Lines. Proceedings of 10th International Conference on Document Analysis and Recognition, 176–180, (2009)

    Google Scholar 

  5. Louloudis, G., Gatos, B., and Halatsis, C: Text Line and Word Segmentation of Handwritten Documents. Pattern Recognition, 42(12):3169–3183, (2009)

    Google Scholar 

  6. Stamatopoulos, N., Gatos, B., Louloudis, G, Pal, U., Alaei, A.: ICDAR 2013 Handwritten Segmentation Contest. 12th International Conference on Document Analysis and Recognition, 14021–1406 (2013)

    Google Scholar 

  7. Likforman-Sulem, L., Zahour, A., and Taconet, B.: Text Line Segmentation of Historical Documents: a Survey. International Journal of Document Analysis and Recognition: 123–138, (2007)

    Google Scholar 

  8. Antonacopoulos, A., Karatzas, D.: Document Image analysis for World War II personal records, International Workshop on Document Image Analysis for Libraries. DIAL, 336–341 (2004)

    Google Scholar 

  9. Li, y., Zheng, Y., Doermann, D., and Jaeger, S.: A new algorithm for detecting text line in handwritten documents. International Workshop on Frontiers in Handwriting Recognition, 35–40 (2006)

    Google Scholar 

  10. Louloudis, G. Gatos, B., Pratikakis, I., Halatsis, K., Alaei, A.: A Block Based Hough Transform Mapping for Text Line Detection in Handwritten Documents. Proceedings of the Tenth International Workshop on Frontiers in Handwriting Recognition, 515–520 (2006)

    Google Scholar 

  11. Tsuruoka, S., Adachi, Y., and Yoshikawa, T.: Segmentation of a Text-Line for a Handwritten Unconstrained Document Using Thinning Algorithm, Proceedings of the 7th International Workshop on Frontiers in Handwriting Recognition:505–510, (2000)

    Google Scholar 

  12. Luthy, F., Varga, T., and Bunke, H.,: Using Hidden Markov Models as a Tool for Handwritten Text Line Segmentation. Ninth International Conference on Document Analysis and Recognition. 9, 630–632 (2007)

    Google Scholar 

  13. Lie, Y., Zheng, Y.: Script-Independent Text Line Segmentation in Freestyle Handwritten Documents. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(8), 1313–1329 (2008)

    Article  Google Scholar 

  14. Yin, F., Liu, C: A Variational Bayes Method for Handwritten Text Line Segmentation. International Conference on Document Analysis and Recognition. 10, 436–440 (2009)

    Google Scholar 

  15. Brodic, D., and Milivojevic, Z.: Text Line Segmentation by Adapted Water Flow Algorithm. Symposium on Neural Network Applications in Electrical Engineering. 10, 225–229 (2010)

    Article  Google Scholar 

  16. Dinh, T. N., Park, J., Lee, G.: Voting Based Text Line Segmentation in Handwritten Document Images. International Conference on Computer and Information Technology. 10, 529–535 (2010)

    Google Scholar 

  17. Biswas, B., Bhattacharya, U., and Chaudhuri, B.B.: A Global-to-Local Approach to Binarization of Degraded Document Images. 22nd International Conference on Pattern Recognition, 3008–3013 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barun Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this paper

Cite this paper

Biswas, B., Bhattacharya, U., Chaudhuri, B.B. (2017). A Robust Scheme for Extraction of Text Lines from Handwritten Documents. In: Raman, B., Kumar, S., Roy, P., Sen, D. (eds) Proceedings of International Conference on Computer Vision and Image Processing. Advances in Intelligent Systems and Computing, vol 460. Springer, Singapore. https://doi.org/10.1007/978-981-10-2107-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-2107-7_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-2106-0

  • Online ISBN: 978-981-10-2107-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics