Distribution-Based Image Similarity | SpringerLink
Skip to main content

Part of the book series: Computational Imaging and Vision ((CIVI,volume 22))

  • 194 Accesses

Abstract

Image similarity measures are at the core of every image retrieval system. In this contribution, we provide a systematic overview of distribution based measures for image similarity. We then empirically compare nine families of color and texture similarity measures summarizing over 1,000 CPU hours of computational experiments. Quantitative performance evaluations are given for classification and image retrieval.

Based on the empirical findings a novel image retrieval framework is developed relying on the following fundamental design decisions: First, database items are described by generative probabilistic models. Second, similarity between a query and a database image is measured in terms of how well the corresponding generative model describes or explains the new query. Besides its statistical foundation the proposed procedure has the following key advantages: (i) The probabilistic models can be estimated independently from each other. Thus no joint histogram binning for the complete database as in most commonly employed methods is necessary. (ii) It is possible to model different cues for different images. (iii) The approach can naturally be extended to more refined models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. R. Bach, C. Fuller, A. Gupta, A. Hampapur, B. Horowitz, R. Humphrey, R. Jain, and C. Shu. Virage image search engine: an open framework for image management. In SPIE Conference on Storage and Retrieval for Image and Video Databases IV, volume 2670, pages 76-87, March 1996.

    Google Scholar 

  2. S. Belongie, C. Carson, H. Greenspan, and J. Malik. Color-and texture—based image segmentation using expectation—maximization algorithm and its application to content—based image retrieval. In Proc. International Conference on Computer Vision (ICCV’98), pages 675-682, 1998.

    Google Scholar 

  3. K. Clarkson. Nearest neighbor queries in metric spaces. In ACM Symposium on the Theory of Computing, pages 609-617, 1997.

    Google Scholar 

  4. T. Cover and J. Thomas. Elements of Information Theory. Wiley and Sons, 1991.

    Google Scholar 

  5. G. Cross and A. Jain. Markov random field texture models. IEEE PAMI, 5: 25 - 39, 1983.

    Article  Google Scholar 

  6. M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by image and video content: The QBIC system. IEEE Computer, pages 23 - 32, September 1995.

    Google Scholar 

  7. D. Forsyth, J. Malik, M. Fleck, H. Greenspan, and T. Leung. Finding pictures of objects in large collections of images. In International Workshop on Object Recognition for Computer Vision, Cambridge, UK, April 1996.

    Google Scholar 

  8. D. Geman, S. Geman, C. Graffigne, and P. Dong. Boundary detection by constrained optimization. IEEE PAMI, 12 (7): 609 - 628, 1990.

    Article  Google Scholar 

  9. G. Gimel’farb and A. Jain. On retrieving textured images from image database. Pattern Recognition, 29 (9): 1461 - 1483, 1996.

    Article  Google Scholar 

  10. J. Hafner, H. Sawhney, W. Equitz, M. Flickner, and W. Niblack. Efficient color histogram indexing for quadratic form distance functions. IEEE PAMI, 17 (7): 729 - 736, 1995.

    Article  Google Scholar 

  11. R. Haralick, K. Shanmugan, and I. Dinstein. Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics, 3 (1): 610 - 621, 1973.

    Article  Google Scholar 

  12. T. Hofmann, J. Puzicha, and J. Buhmann. Unsupervised texture segmentation in a deterministic annealing framework. IEEE PAMI, 20 (8): 803 - 818, 1998.

    Article  Google Scholar 

  13. A. Jain and F. Farrokhnia. Unsupervised texture segmentation using Gabor filters. Pattern Recognition, 24 (12): 1167 - 1186, 1991.

    Article  Google Scholar 

  14. A. Laine and J. Fan. Texture classification by wavelet packet signatures. IEEE PAMI, 15: 1186 - 1191, 1993.

    Article  Google Scholar 

  15. J. Malik, S. Belongie, J. Shi, and T. Leung. Textons, contours and regions: Cue integration in image segmentation. In Proceedings of the International Conference on Computer Vision (ICCV’99), pages 918-925, 1999.

    Google Scholar 

  16. B. Manjunath and W. Ma. Texture features for browsing and retrieval of image data. IEEE PAMI, 18 (8): 837 - 842, 1996.

    Article  Google Scholar 

  17. J. Mao and A. Jain. Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recognition, 25 (2): 173 - 188, 1992.

    Article  Google Scholar 

  18. T. Ojala, M. Pietikäinen, and D. Harwood. A comparative study of texture measures with classification based feature distributions. Pattern Recognition, 29 (1): 51 - 59, 1996.

    Article  Google Scholar 

  19. A. Pentland, R. W. Picard, and S. Sclaroff. Photobook: content-based manipulation of image databases. Int. J. Computer Vision, 18 (3): 233 - 254, 1996.

    Article  Google Scholar 

  20. R. W. Picard and T. P. Minka. Vision texture for annotation. Multimedia Systems, 3: 3 - 14, 1995.

    Article  Google Scholar 

  21. O. Pichler, A. Teuner, and B. Hosticka. A comparison of texture feature extraction using adaptive Gabor filtering, pyramidal and tree—structured wavelet transforms. Pattern Recognition, 29 (5): 733 - 742, 1996.

    Article  Google Scholar 

  22. J. Puzicha, T. Hofmann, and J. Buhmann. Non—parametric similarity measures for unsupervised texture segmentation and image retrieval. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’97), pages 267-272, 1997.

    Google Scholar 

  23. J. Puzicha, T. Hofmann, and J. Buhmann. Histogram clustering for unsupervised segmentation and image retrieval. Pattern Recognition Letters, 20 (9): 899 - 909, 1999.

    Article  Google Scholar 

  24. J. Puzicha, Y. Rubner, C. Tomasi, and J. Buhmann. Empirical evaluation of dissimilarity measures for color and texture. In Proceedings of the International Conference on Computer Vision (ICCV’99), pages 11651173, 1999.

    Google Scholar 

  25. Y. Rubner, J. Puzicha, C. Tomasi, and J. Buhmann. Empirical evaluation of dissimilarity measures for color and texture (to appear). Computer Vision and Image Understanding, 2001.

    Google Scholar 

  26. Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for distributions with applications to image databases. In IEEE International Conference on Computer Vision, pages 59 - 66, Bombay, India, January 1998.

    Google Scholar 

  27. M. Ruzon and C. Tomasi. Color edge detection with the compass operator. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’99), pages 160-166, 1999.

    Google Scholar 

  28. M. Swain and D. Ballard. Color indexing. International Journal of Computer Vision, 7(1): 11 - 32, 1991.

    Google Scholar 

  29. N. Vasconcelos and A. Lippman. Embedded mixture modeling for efficient probabilistic content-based indexing and retrieval. In Proceedings of the SPIE Conference on Multimedia Storage and Archiving Systems III, pages 134-143, 1998.

    Google Scholar 

  30. N. Vasconcelos and A. Lippman. Probabilistic retrieval: new insights and experimental results. In Proceedings IEEE Workshop on Content-Based Access of Image and Video Libraries, pages 62-66, 1999.

    Google Scholar 

  31. H. Voorhees and T. Poggio. Computing texture boundaries from images. Nature, 333: 364 - 367, 1988.

    Article  Google Scholar 

  32. G. Wyszecki and W. S. Stiles. Color Science: Concepts and Methods, Quantitative Data and Formulae. John Wiley and Sons, New York, NY, 1982.

    Google Scholar 

  33. S.C. Zhu. Embedding Gestalt laws in the Markov random fields - a theory for shape modeling and perceptual organization. IEEE PAMI, 21 (11): 1170 - 1187, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Puzicha, J. (2001). Distribution-Based Image Similarity. In: Veltkamp, R.C., Burkhardt, H., Kriegel, HP. (eds) State-of-the-Art in Content-Based Image and Video Retrieval. Computational Imaging and Vision, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9664-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9664-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5863-8

  • Online ISBN: 978-94-015-9664-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics