Features in Content-Based Image Retrieval Systems: A Survey | SpringerLink
Skip to main content

Part of the book series: Computational Imaging and Vision ((CIVI,volume 22))

Abstract

This article provides a framework to describe and compare content-based image retrieval systems. Sixteen contemporary systems are described in detail, in terms of the following technical aspects: querying, relevance feedback, result presentation, features, and matching. For a total of 44 systems we list the features that are used. Of these systems, 35 use any kind of color features, 28 use texture, and only 25 use shape features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Del Bimbo, M. Mugnaini, P. Pala, and E Turco. Picasso: Visual querying by color perceptive regions. In Proceedings of the 2nd International Conference on Visual Information Systems, San Diego, December ’87, pages 125–131, 1997.

    Google Scholar 

  2. Chad Carson, Megan Thomas, Serge Belongie, Joseph M. Hellerstein, and Jitendra Malik. Blobworld: A system for region-based image indexing and retrieval. In Huijsmans and Smeulders [8].

    Google Scholar 

  3. John P. Eakins and Margaret E. Graham. Content-based image retrieval, a report to the JISC technology application programme. Technical report, Institute for Image Data Research, University of Northumbria at Newcastle, UK, January 1999. http://www.unn.ac.uk/iidr/report.html.

  4. David A. Forsyth and Margaret M. Fleck. Body plans. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 678–683, 1997.

    Chapter  Google Scholar 

  5. Theo Gevers and Arnold Smeulders. Pictoseek: Combining color and shape invariant features for image retrieval. IEEE Transactions on Image Processing, 9 (1): 102–119, January 2000.

    Article  Google Scholar 

  6. W. I. Grosky. Multimedia information systems. IEEE Multimedia, 1 (1): 1224, 1994.

    Article  Google Scholar 

  7. V. N. Gudivada and V. V. Raghavan. Content-based image retrieval systems. IEEE Computer, 28 (9): 18–31, September 1995.

    Article  Google Scholar 

  8. D. P. Huijsmans and A. W. M. Smeulders, editors. Visual Information and Information Systems, Proceedings of the Third International Conference VISUAL ’89, Amsterdam, The Netherlands, June 1999, Lecture Notes in Computer Science 1614. Springer, 1999.

    Google Scholar 

  9. J. Kreyss, M. Röper, P. Alshuth, Th. Hermes, and O. Herzog. Video retrieval by still image analysis with ImageMiner. In Proceedings of ISandT/SPIE’s Symposium on Electronic Imaging: Science and Technologie, 8–14 Feb. ’87, San Jose, CA, 1997.

    Google Scholar 

  10. Michael S. Lew, D. P. Huijsmans, and Dee Denteneer. Content based image retrieval: KLT, projections, or templates. pages 27–34. Amsterdam University Press, August 1996.

    Google Scholar 

  11. Z.N. Li, O. R. Zaïane, and Z. Tauber. Illumination invariance and object model in content-based image and video retrieval. Journal of Visual Communication and Image Representation, 10 (3): 219–244, September 1999.

    Article  Google Scholar 

  12. Wei-Ying Ma and B. S. Manjunath. Netra: A toolbox for navigating large image databases. Multimedia Systems, 7 (3): 184–198, 1999.

    Article  Google Scholar 

  13. R. Manmatha and S. Ravela. A syntactic characterization of appearance and its application to image retrieval. In Proceedings of the SPIE conference on Human Vision and Electronic Imaging II, Vol, 3016, San Jose, CA, Feb. ’87, 1997.

    Google Scholar 

  14. Chahab Nastar, Matthias Mitschke, Christophe Meilhac, and Nozha Boujemaa. Surfimage: A flexible content-based image retrieval system. In Proceedings of the ACM International Multimedia Conference, 12–16 September ’88, Bristol, England, pages 339–344, 1998.

    Google Scholar 

  15. W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic, P. Yanker, C. Faloutsos, and G. Taubin. The qbic project: Quering images by content using color, texture, and shape. In Poceedings of the SPIE Conference on Storage and Retrieval for Image and Video Databases, 2–3 February ’83, San Jose, CA, pages 173–187, 1993.

    Chapter  Google Scholar 

  16. Michael Ortega, Yong Rui, Kaushik Chakrabarti, Sharad Mehrotra, and Thomas S. Huang. Supporting similarity queries in MARS. In Proceedings of the 5th ACM International Multimedia Conference, Seattle, Washington, 8–14 Nov ’87, pages 403–413, 1997.

    Google Scholar 

  17. Yong Rui, Thomas S. Huang, and Shih-Fu Chang. Image retrieval: Current techniques, promising directions and open issues. Journal of Visual Communication and Image Representation, 10 (1): 1–23, March 1999.

    Google Scholar 

  18. J. R. Smith and S.-F. Chang Querying by color regions using the VisualSEEk content-based visual query system. In M. T. Maybury, editor, Intelligent Multimedia Information Retrieval. AAAI Press, 1997.

    Google Scholar 

  19. Rohini Srihari, Zhongfei Zhang, and Aibing Rao. Intelligent indexing and semantic retrieval of multimodal documents. Information Retrieval, 2 (2): 245–275, 2000.

    Article  Google Scholar 

  20. H. Tamura, S. Mori, and T. Yamawaki. Texture features corresponding to visual perception. IEEE Transactions on Systems, Man and Cybernetics, 8 (6): 460–473, 1978.

    Article  Google Scholar 

  21. Hideyuki Tamura and Naokazu Yokoya. Image database systems: A survey. Pattern Recognition, 17 (1): 29–43, 1984.

    Article  Google Scholar 

  22. Leonid Taycher, Marco La Cascia, and Stan Sclaroff. Image digestion and relevance feedback in the ImageRover WWW search engine. In Proceedings of the 2nd International Conference on Visual Information Systems, San Diego, December ’87, pages 85–94, 1997.

    Google Scholar 

  23. Remco C. Veltkamp and Michiel Hagedoorn. State-of-the-art in shape matching. In Michael Lew, editor, Principles of Visual Information Retrieval. Springer, 2001.

    Google Scholar 

  24. Remco C. Veltkamp and Mirela Tanase. Content-based image retrieval systems: A survey. Technical Report UU-CS-2000–34, Utrecht University, Department of Computer Science, October 2000. See http: //www. aalab. cs.uu.nl/cbirs/ for an updated version.

    Google Scholar 

  25. J. Vendrig. Filter image browsing: a study to image retrieval in large pictorial databases. Master’s thesis, Dept. Computer Science, University of Amsterdam, The Netherlands, http: //carol. wins. uva. nl/“ vendrig/thesis/, February 1997.

    Google Scholar 

  26. J. Z. Wang, G. Wiederhold, O. Firschein, and S. X. Wei. Wavelet-based image indexing techniques with partial sketch retrieval capability. In Proceedings of the Fourth Forum on Research and Technology Advances in Digital Libraries, Washington D.C., May ’87, pages 13–24, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Veltkamp, R.C., Tanase, M., Sent, D. (2001). Features in Content-Based Image Retrieval Systems: A Survey. In: Veltkamp, R.C., Burkhardt, H., Kriegel, HP. (eds) State-of-the-Art in Content-Based Image and Video Retrieval. Computational Imaging and Vision, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9664-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9664-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5863-8

  • Online ISBN: 978-94-015-9664-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics