Automated Detection of Microcalcifications after Lossy Compression of Digital Mammograms | SpringerLink
Skip to main content

Automated Detection of Microcalcifications after Lossy Compression of Digital Mammograms

  • Chapter
Digital Mammography

Part of the book series: Computational Imaging and Vision ((CIVI,volume 13))

  • 355 Accesses

Abstract

With the advent of full-field digital mammography, mammograms may provide a spatial resolution of 0.05 mm pixel size and 12–14 bits of gray level information which corresponds to more than 30 MBytes of data per image. The consequences are increased costs for storage and delays during image communication and display. Image compression techniques offer a solution to these problems [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Erickson BJ, Manduca A, Palisson P, Persons KR, Earnest F, Savcenko V, Hangian-dreou NJ (1998) Wavelet compression of medical images. Radiology, 206(3):599–607.

    PubMed  CAS  Google Scholar 

  2. Netsch T (1996) A scale-space approach for the detection of clustered microcalcifications in digital mammograms. In: Doi K, Giger ML, Nishikawa RM, Schmidt RA, editors, Digital Mammography′96, pages 301–306. Elsevier, Amsterdam.

    Google Scholar 

  3. Wallace GK (1991) The JPEG still picture compression standard. Communications of the ACM, 34(4):30–44.

    Article  Google Scholar 

  4. Shapiro JM (1993) Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Signal Processing, 41(12):3445–3462.

    Article  Google Scholar 

  5. Said A, Pearlman WA (1996) An image multiresolution representation for lossless and lossy compression. IEEE Transactions on Image Processing, 5(9):1303–1310.

    Article  PubMed  CAS  Google Scholar 

  6. Tian J, Wells RO (1996) A lossy image codec based on index coding. In: Proceedings of the IEEE Data Compression Conference, page 456, Snowbird, UT.

    Google Scholar 

  7. Strang G, Nguyen T (1996) Wavelets and filter banks. Wellesley-Cambridge Press, Wellesley, MA.

    Google Scholar 

  8. Villasenor J, Beizer B, Liao J (1995) Wavelet filter evaluation for image compression. IEEE Transactions on Image Processing, 4(8): 1053–1060.

    Article  PubMed  CAS  Google Scholar 

  9. Sharp PF (1990) Quantifying image quality. Clinical physics and physiological measurement, 11:21–26.

    Article  PubMed  Google Scholar 

  10. Goldberg MA, Pivovarov M, Mayo-Smith WW, Bhalla MP, Blickman JG, Bramson RT, Boland GW, Llewellyn HJ, Halpern E (1994) Application of wavelet compression to digitized radiographs. American Journal of Radiology, 163(2):463–468.

    CAS  Google Scholar 

  11. Kjølstad A, Kegelmeyer WP, Sund T, Braathen B (1994) Effects of lossy compression of digital mammograms evaluated by an automatic diagnosis. In: Gale AG, Astley SM, Dance DR, Cairns AY, editors, Digital Mammography, pages 101–110. Elsevier, Amsterdam.

    Google Scholar 

  12. Teo P, Heeger D (1994) Perceptual image distortion. In: Human Vision, Visual Processing, and Digital Display, volume 2179 of SPIE Proceedings, pages 127–142.

    Google Scholar 

  13. Karssemeijer N (1993) Adaptive noise equalization and recognition of microcalcification clusters in mammograms. International Journal of Pattern Recognition and Artificial Intelligence, 7(6): 1357–1376.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Netsch, T., Lang, M., Peitgen, HO. (1998). Automated Detection of Microcalcifications after Lossy Compression of Digital Mammograms. In: Karssemeijer, N., Thijssen, M., Hendriks, J., van Erning, L. (eds) Digital Mammography. Computational Imaging and Vision, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5318-8_77

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5318-8_77

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6234-3

  • Online ISBN: 978-94-011-5318-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics