Abstract
This chapter presents an overview of thermal imaging sensors for photogrammetric close-range applications. In particular, it presents results of the geometric calibration of thermographic cameras as they are used for building inspection and material testing. Geometric calibration becomes evident for all precise geometric image operations, e.g. mosaicking of two or more images or photogrammetric 3D modelling with thermal imagery. Two different test fields have been designed providing point targets that are visible in the thermal spectral band of the cameras.
Five different cameras have been investigated. Four of them have solid state sensors with pixel sizes between 25 and 40 μm (i.e. size of single sensor element on the chip). One camera is working in scanning mode. The lenses for thermographic cameras are made of Germanium, which is, in contrast to glass, transparent to thermal radiation. Conventional imaging configurations (typically 20 images) have been used for camera calibration. Standard parameters for principal distance, principal point, radial distortion, decentring distortion, affinity and shear have been introduced into the self-calibrating bundle adjustment. All measured points are introduced as weighted control points. Image coordinates have been measured either in the professional software package AICON 3D Studio (ellipse operators), or in the software system Stereomess (least-squares template matching), developed by the Institute for Applied Photogrammetry and Geoinformatics of the Jade University of Applied Sciences Oldenburg.
The calibration results differ significantly from camera to camera. All lenses show relatively large decentring distortion and deviations from orthogonality of the image coordinate axes. Using a plane test field with heated lamps, the average image precision is 0.3 pixel while a 3D test field with circular reflecting targets results in imaging errors of 0.05 pixel.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Buyuksalih G, Petrie G (1999) Geometric and radiometric calibration of frame-type infrared imagers. ISPRS joint workshop sensors and mapping from space 1999, Hannover
Dereniak EL, Boreman GD (1996) Infrared detectors and systems. Wiley-Interscience, New York, 561pp
Ehlers M, Klonusa S, Åstrand PJ, Rosso P (2010) Multi-sensor image fusion for pansharpening in remote sensing. Int J Image Data Fusion 1(1):25–45
Fouad NA, Richter T (2008) Leitfaden Thermografie im Bauwesen. Fraunhofer IRB Verlag, Stuttgart, 127pp
Fraser CS (1997) Digital camera self-calibration. ISPRS J Photogramm Remote Sens 52:149–159
Godding R (1993) Ein photogrammetrisches Verfahren zur Überprüfung und Kalibrierung digitaler Bildaufnahmesysteme. Z Photogramm Fernerkund 2:82–90
Hierl T (2008) Hochauflösende Infrarot-Detektormatrizen. In: Bauer N (ed) Handbuch zur Industriellen Bildverarbeitung. Fraunhofer IRB Verlag, Stuttgart, pp 41–46
Kaplan H (2007) Practical applications of infrared thermal sensing and image equipment. SPIE Publications, Bellingham, 192pp
Le Noc L, Tremblay B, Martel A, Chevalier C, Blanchard N, Morissette M, Mercier L, Duchesne F, Gagnon L, Couture P, Lévesque F, Desnoyers N, Demers M, Lamontage F, Jerominek H, Bergeron A (2010) 1280 × 960 pixel microscanned infrared imaging module. In: Infrared technology and applications XXXVI. Proceedings of SPIE, vol 7660: 766021-766021-10, Orlando, 2010
Luhmann T (2010) Erweiterte Verfahren zur geometrischen Kamerakalibrierung in der Nahbereichsphotogrammetrie, Habilitationsschrift, Deutsche Geodätische Kommission, Reihe C, Nr. 645. Verlag der Bayerischen Akademie der Wissenschaften in Kommission beim Verlag C. H. Beck, München
Luhmann T, Robson S, Kyle S, Harley I (2006) Close range photogrammetry. Whittles Publishing, Dunbeath, 500pp
Luhmann T, Ohm J, Piechel J, Roelfs T (2010) Geometric calibration of thermographic cameras. In: International archives of photogrammetry, remote sensing and spatial information sciences, vol XXXVIII, Part 5 Commission V symposium, Newcastle upon Tyne, 2010, pp 411–416
Nolting J (2007) Detektoren für optische Strahlung. DOZ Optometrie 4-2007:50–56
Planck M (1900) Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum. Verhandlungen der Deutschen physikalischen Gesellschaft 2(17):237–245, Berlin
Schuster N, Kolobrodov VG (2004) Infrarotthermographie. Wiley-VCH Verlag, Weinheim, 354pp
Toet A, van Ruyven JJ, Valeton JM (1989) Merging thermal and visual images by a contrast pyramid. Opt Eng 28(7):789–792
Wolfe WL, Zissis GJ (1985) The infrared handbook. Environmental Research Institute of Michigan, Ann Arbor, 1700pp
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Luhmann, T., Piechel, J., Roelfs, T. (2013). Geometric Calibration of Thermographic Cameras. In: Kuenzer, C., Dech, S. (eds) Thermal Infrared Remote Sensing. Remote Sensing and Digital Image Processing, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6639-6_2
Download citation
DOI: https://doi.org/10.1007/978-94-007-6639-6_2
Published:
Publisher Name: Springer, Dordrecht
Print ISBN: 978-94-007-6638-9
Online ISBN: 978-94-007-6639-6
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)