Cerebellar Nuclei and the Inferior Olivary Nuclei: Organization and Connections | SpringerLink
Skip to main content

Cerebellar Nuclei and the Inferior Olivary Nuclei: Organization and Connections

  • Reference work entry
Handbook of the Cerebellum and Cerebellar Disorders

Abstract

The cerebellar nuclei, together with certain vestibular nuclei, are the target of the axons of the Purkinje cells of the cerebellar cortex. Each of these nuclei receives a projection from a longitudinal Purkinje cell zone. Climbing fiber projections are organized according to the same zonal pattern. In this chapter, we will review the morphology and the circuitry of the cerebellar nuclei and the inferior olive and the recurrent pathways connecting them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 157299
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 157299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ackerley R, Pardoe J, Apps R (2006) A novel site of synaptic relay for climbing fibre pathways relaying signals from the motor cortex to the cerebellar cortical C1 zone. J Physiol 57:503–518

    Article  CAS  Google Scholar 

  • Akaike T (1989) Electrophysiological analysis of the trigemino-olivo-cerebellar (crura I and II, lobulus simplex) projection in the rat. Brain Res 20:402–406

    Article  Google Scholar 

  • Akaike T (1992) The tectorecipient zone in the inferior olivary nucleus in the rat. J Comp Neurol 320:398–414

    Article  PubMed  CAS  Google Scholar 

  • Alonso A, Blanco MJ, Paino CL, Rubia FJ (1986) Distribution of neurons in the main cuneate nucleus projecting to the inferior olive in the cat. Evidence that they differ from those directly projecting to the cerebellum. Neuroscience 18:671–683

    Article  PubMed  CAS  Google Scholar 

  • Andersson G (1984) Demonstration of a cuneate relay in a cortico-olivo-cerebellar pathway in the cat. Neurosci Lett 46:47–52

    Article  PubMed  CAS  Google Scholar 

  • Andersson G, Eriksson L (1981) Spinal, trigeminal, and cortical climbing fibre paths to the lateral vermis of the cerebellar anterior lobe in the cat. Exp Brain Res 44:71–81

    Article  PubMed  CAS  Google Scholar 

  • Andersson G, Oscarsson O (1978) Climbing fiber microzones in cerebellar vermis and their projection to different groups of cells in the lateral vestibular nucleus. Exp Brain Res 32:565–579

    PubMed  CAS  Google Scholar 

  • Angaut P, Brodal A (1967) The projection of the “vestibulocerebellum” onto the vestibular nuclei in the cat. Arch Ital Biol 105:441–479

    PubMed  CAS  Google Scholar 

  • Armstrong DM, Schild RF (1979) Spino-olivary neurones in the lumbo-sacral cord of the cat demonstrated by retrograde transport of horseradish peroxidase. Brain Res 168:176–179

    Article  PubMed  CAS  Google Scholar 

  • Armstrong DM, Harvey RJ, Schild RF (1973) Branching of inferior olivary axons to terminate in different folia, lobules or lobes of the cerebellum. Brain Res 54:365–371

    Article  PubMed  CAS  Google Scholar 

  • Armstrong DM, Campbell MC, Edglet SA, Schild RF (1982) Investigations of the olivocerebellar and spino-olivary pathways. Exp Brain Res 6:195–232

    Article  Google Scholar 

  • Azizi SA, Woodward DJ (1987) Inferior olivary nuclear complex of the rat: morphology and comments on the principles of organization within the olivocerebellar system. J Comp Neurol 263:467–484

    Article  PubMed  CAS  Google Scholar 

  • Bagnall MW, Zingg B, Sakatos A, Moghadam SH, Zeilhofer HU, du Lac S (2009) Glycinergic projection neurons of the cerebellum. J Neurosci 29:10104–10110

    Article  PubMed  CAS  Google Scholar 

  • Barmack NH (2006) Inferior olive and oculomotor system. Prog Brain Res 151:269–291

    Article  PubMed  Google Scholar 

  • Barmack NH, Fagerson M, Errico P (1993) Cholinergic projection to the dorsal cap of the inferior olive of the rat, rabbit, and monkey. J Comp Neurol 328:263–281

    Article  PubMed  CAS  Google Scholar 

  • Barmack NH, Fredette BJ, Mugnaini E (1998) Parasolitary nucleus: a source of GABAergic vestibular information to the inferior olive of rat and rabbit. J Comp Neurol 392:352–372

    Article  PubMed  CAS  Google Scholar 

  • Batton RR 3rd, Jayaraman A, Ruggiero D, Carpenter MB (1977) Fastigial efferent projections in the monkey: an autoradiographic study. J Comp Neurol 174:281–305

    Article  PubMed  Google Scholar 

  • Beitz AJ (1976) The topographical organization of the olivo-dentate and dentato-olivary pathways in the cat. Brain Res 115:311–317

    Article  PubMed  CAS  Google Scholar 

  • Bentivoglio M, Kuypers HGJM (1982) Divergent axon collaterals from rat cerebellar nuclei to diencephalon, mesencephalon, medulla oblongata and cervical cord. Exp Brain Res 46:339–356

    Article  PubMed  CAS  Google Scholar 

  • Berkley KJ, Hand PJ (1978) Projections to the inferior olive of the cat. II. Comparisons of input from the gracile, cuneate and the spinal trigeminal nuclei. J Comp Neurol 180:253–264

    Article  PubMed  CAS  Google Scholar 

  • Bertrand I, Marechal P (1930) Étude morphologique du complexe olivaire inférieur chez l’homme. Revue Neurol 53:705–736

    Google Scholar 

  • Bigaré F (1980) De efferente verbindingen van de cerebellaire schors van de kat. Thesis, Leiden University

    Google Scholar 

  • Boesten AJ, Voogd J (1975) Projections of the dorsal column nuclei and the spinal cord on the inferior olive in the cat. J Comp Neurol 161:215–237

    Article  PubMed  CAS  Google Scholar 

  • Borra E, Belmalih A, Gerbella M, Rozzi S, Luppino G (2010) Projections of the hand field of the macaque ventral premotor area F5 to the brainstem and spinal cord. J Comp Neurol 518:2570–2591

    PubMed  Google Scholar 

  • Bowman JP, Sladek JR Jr (1973) Morphology of the inferior olivary complex of the rhesus monkey (Macaca mulatta). J Comp Neurol 152:299–316

    Article  PubMed  CAS  Google Scholar 

  • Brodal A (1940) Untersuchungen über die Olivocerebellaren Lokalisation. Z Neurol 169:1053

    Google Scholar 

  • Brodal P, Brodal A (1981) The olivocerebellar projection in the monkey. Experimental studies with the method of retrograde tracing of horseradish peroxidase. J Comp Neurol 201:375–393

    Article  PubMed  CAS  Google Scholar 

  • Brodal A, Kawamura K (1980) Olivocerebellar projection: a review. Adv Anat Embryol Cell Biol 64:1–137

    Article  Google Scholar 

  • Brodal A, Walberg F, Blackstad T (1950) Termination of spinal afferents to inferior olive in cat. J Neurophysiol 13:431–454

    PubMed  CAS  Google Scholar 

  • Brown JT, Chan-Palay V, Palay SL (1977) A study of afferent input to the inferior olivary complex in the rat by retrograde axonal transport of horseradish peroxidase. J Comp Neurol 176:1–22

    Article  PubMed  CAS  Google Scholar 

  • Buisseret-Delmas C (1982) An HRP study of the afferents to the inferior olive in cat. Arch Ital Biol 118:270–286

    Google Scholar 

  • Buisseret-Delmas C (1988) Sagittal organization of the olivocerebellonuclear pathway in the rat. I. Connections with the nucleus fastigii and the nucleus vestibularis lateralis. Neurosci Res 5:475–493

    Article  PubMed  CAS  Google Scholar 

  • Buisseret-Delmas C (1989) Sagittal organization of the olivocerebellonuclear pathway in the rat. III. Connections with the nucleus dentatus. Neurosci Res 7:131–143

    Article  PubMed  CAS  Google Scholar 

  • Buisseret-Delmas C, Angaut P (1993) The cerebellar olivo-corticonuclear connections in the rat. Prog Neurobiol 40:63–87

    Article  PubMed  CAS  Google Scholar 

  • Buisseret-Delmas C, Angaut P, Compoint C, Diagne M, Buisseret P (1998) Brainstem efferents from the interface between the nucleus medialis and the nucleus interpositus in the rat. J Comp Neurol 402:264–275

    Article  PubMed  CAS  Google Scholar 

  • Bull MS, Mitchell SK, Berkley KJ (1990) Convergent inputs to the inferior olive from the dorsal column nuclei and pretectum in the cat. Brain Res 525:1–10

    Article  PubMed  CAS  Google Scholar 

  • Burman K, Darian-Smith C, Darian-Smith I (2000) Macaque red nucleus: origins of spinal and olivary projections and terminations of cortical inputs. J Comp Neurol 423:179–196

    Article  PubMed  CAS  Google Scholar 

  • Cajal SRy (1972) Histologie du système nerveux de l’homme et des vertebrés, vol 2. Consejo Superior de Investigaciones Cientificas, Madrid

    Google Scholar 

  • Campbell NC, Armstrong DM (1985) Origin in the medial accessory olive of climbing fibres to the x and lateral c1 zones of the cat cerebellum: a combined electrophysiological/WGA-HRP investigation. Exp Brain Res 58:520–531

    Article  PubMed  CAS  Google Scholar 

  • Catsman-Berrevoets CE, Kuypers HJGM, Lemon RN (1979) Cells of origin of the cortical projections to magnocellular and parvocellular red nucleus and superior colliculus in cynomolgus monkey. An HRP study. Neurosci Lett 12:41–46

    Article  Google Scholar 

  • Chan-Palay V (1977) Cerebellar dentate nucleus: organization, cytology and transmitters. Springer, Berlin

    Google Scholar 

  • Chen S, Hillman DE (1993) Colocalization of neurotransmitters in the deep cerebellar nuclei. J Neurocytol 22:81–91

    Article  PubMed  CAS  Google Scholar 

  • Clower DM, West RA, Lynch JC, Strick PL (2001) The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci 21:6283–6291

    PubMed  CAS  Google Scholar 

  • Clower DM, Dum RP, Strick PL (2005) Basal ganglia and cerebellar inputs to ‘AIP’. Cereb Cortex 15(7):913–920

    Article  PubMed  Google Scholar 

  • Cook JR, Wiesendanger M (1976) Input from trigeminal cutaneous afferents to neurones of the inferior olive in rats. Exp Brain Res 26:193–202

    Article  PubMed  CAS  Google Scholar 

  • Courville J (1975) Distribution of olivocerebellar fibers demonstrated by a radioautographic method. Brain Res 95:253–263

    Article  PubMed  CAS  Google Scholar 

  • Courville J, Cooper CW (1970) The cerebellar nuclei of Macaca mulatta: a morphological study. J Comp Neurol 140:241–254

    Article  PubMed  CAS  Google Scholar 

  • Courville J, Faraco-Cantin F (1978) On the origin of the climbing fibers of the cerebellum. An experimental study in the cat with an autoradiographic tracing method. Neuroscience 3:797–809

    Article  PubMed  CAS  Google Scholar 

  • Courville J, Faraco-Cantin F, Diakiw N (1974) A functionally important feature of the distribution of the olivo-cerebellar climbing fibers. Can J Physiol Pharmacol 52:1212–1217

    Article  PubMed  CAS  Google Scholar 

  • Courville J, Faraco-Cantin F, Legendre A (1983a) Detailed organization of cerebello-olivary projections in the cat. An autoradiographic study. Arch Ital Biol 121:219–236

    PubMed  CAS  Google Scholar 

  • Courville J, Faraco-Cantin F, Marcon L (1983b) Projections from the reticular formation of the medulla, the spinal trigeminal and lateral reticular nuclei to the inferior olive. Neuroscience 9:129–139

    Article  PubMed  CAS  Google Scholar 

  • De Zeeuw CI, Wentzel P, Mugnaini E (1993) Fine structure of the dorsal cap of the inferior olive and its GABAergic and non-GABAergic input from the nucleus prepositus hypoglossi in rat and rabbit. J Comp Neurol 327:63–82

    Article  PubMed  Google Scholar 

  • De Zeeuw CI, Gerrits NM, Voogd J, Leonard CS, Simpson JI (1994a) The rostral dorsal cap and ventrolateral outgrowth of the rabbit inferior olive receive a GABAergic input from dorsal group Y and the ventral dentate nucleus. J Comp Neurol 341:420–432

    Article  PubMed  Google Scholar 

  • De Zeeuw CI, Wylie DR, DiGiorgi PL, Simpson JI (1994b) Projections of individual Purkinje cells of identified zones in the flocculus to the vestibular and cerebellar nuclei in the rabbit. J Comp Neurol 349:428–447

    Article  PubMed  Google Scholar 

  • Demolé V (1927a) Structure et cnnexions des noyeaux denreles du cervelet. I. Schweiz Arch Neurol Psychiat 20:271–294

    Google Scholar 

  • Demolé V (1927b) Structure et connection des noyeaux denteles du cervelet. II. Schweiz Arch Neurol u Psychiat 21:73–1110

    Google Scholar 

  • Desclin JC (1974) Histological evidence supporting the inferior olive as the major source of cerebellar climbing fibers in the rat. Brain Res 77:365–384

    Article  PubMed  CAS  Google Scholar 

  • Eccles JC, Llinas R, Sasaki K (1966) The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J Physiol 182:268–296

    PubMed  CAS  Google Scholar 

  • Ekerot CF, Larson B (1979a) The dorsal spino-olivocerebellar system in the cat. I. Functional organization and termination in the anterior lobe. Exp Brain Res 36(2):201–217

    Article  PubMed  CAS  Google Scholar 

  • Ekerot CF, Larson B (1979b) The dorsal spino-olivocerebellar system in the cat. II. Somatotopical organization. Exp Brain Res 36:219–232

    Article  PubMed  CAS  Google Scholar 

  • Ekerot CF, Larson B (1982) Branching of olivary axons to innervate pairs of sagittal zones in the cerebellar anterior lobe of the cat. Exp Brain Res 48:185–198

    Article  PubMed  CAS  Google Scholar 

  • Ekerot CF, Garwicz M, Schouenborg J (1991) The postsynaptic dorsal column pathway mediates cutaneous nociceptive information to cerebellar climbing fibres in the cat. J Physiol 441:275–284

    PubMed  CAS  Google Scholar 

  • Faugier-Grimaud S, Ventre J (1989) Anatomic connections of inferior parietal cortex (area 7) with subcortical structures related to vestibulo-ocular function in a monkey (Macaca fascicularis). J Comp Neurol 280:1–14

    Article  PubMed  CAS  Google Scholar 

  • Frankfurter A, Weber JT, Royce GJ, Strominger NL, Harting JK (1976) An autoradiographic analysis of the tecto-olivary projection in primates. Brain Res 118:245–257

    Article  PubMed  CAS  Google Scholar 

  • Fujita H, Oh-Nishi A, Obayashi S, Sugihara I (2010) Organization of the marmoset cerebellum in three-dimensional space: lobulation, aldolase C compartmentalization and axonal projection. J Comp Neurol 518:1764–1791

    Article  PubMed  CAS  Google Scholar 

  • Garwicz M (1997) Sagittal zonal organization of climbing fiber input to the cerebellar anterior lobe of the ferret. Exp Brain Res 117:389–398

    Article  PubMed  CAS  Google Scholar 

  • Garwicz M, Ekerot CF (1994) Topographical organization of the cerebellar cortical projection to nucleus interpositus anterior in the cat. J Physiol 474:245–260

    PubMed  CAS  Google Scholar 

  • Garwicz M, Ekerot CF, Schouenborg J (1992) Distribution of cutaneous nociceptive and tactile climbing fibre input to sagittal zones in cat cerebellar anterior lobe. Eur J Neurosci 4:289–295

    Article  PubMed  Google Scholar 

  • Gellman R, Houk JC, Gibson AR (1983) Somatosensory properties of the inferior olive of the cat. J Comp Neurol 215:228–243

    Article  PubMed  CAS  Google Scholar 

  • Gerrits NM, Voogd J (1982) The climbing fiber projection to the flocculus and adjacent paraflocculus in the cat. Neuroscience 7:2971–2991

    Article  PubMed  CAS  Google Scholar 

  • Gerrits NM, Voogd J (1986) The nucleus reticularis tegmenti pontis and the adjacent rostral paramedian reticular formation: differential projections to the cerebellum and the caudal brain stem. Exp Brain Res 62:29–45

    Article  PubMed  CAS  Google Scholar 

  • Gerrits NM, Voogd J, Magras IN (1985) Vestibular afferents of the inferior olive and the vestibulo-olivo-cerebellar climbing fiber pathway to the flocculus in the cat. Brain Res 332(2):325–336

    Article  PubMed  CAS  Google Scholar 

  • Gibson AR, Horn KM, Pong M (2002) Inhibitory control of olivary discharge. Ann NY Acad Sci 978:219–231

    Article  PubMed  Google Scholar 

  • Giolli RA, Blanks RH, Lui F (2006) The accessory optic system: basic organization with an update on connectivity, neurochemistry, and function. Prog Brain Res 151:407–440

    Article  PubMed  CAS  Google Scholar 

  • Glickstein M, Strata P, Voogd J (2009) Cerebellum: history. Neuroscience 162:549–559

    Article  PubMed  CAS  Google Scholar 

  • Goodman DC, Hallett RE, Welch RB (1963) Patterns of localization in the cerebellar corticonuclear projections of the albino rat. J Comp Neurol 121:51–67

    Article  PubMed  CAS  Google Scholar 

  • Graybiel AM, Hartwieg EA (1974) Some afferent connections of the oculomotor complex in the cat: an experimental study with tracer techniques. Brain Res 81:543–551

    Article  PubMed  CAS  Google Scholar 

  • Graybiel AM, Nauta HJ, Lasek RJ, Nauta WJ (1973) A cerebello-olivary pathway in the cat: an experimental study using autoradiographic tracing techniques. Brain Res 58:205–211

    Article  PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Voogd J (1977) The parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of cat cerebellum. J Comp Neurol 174:417–488

    Article  PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Boesten AJ, Voogd J (1975) The dorsal column nuclear projections to the nucleus ventralis posterior lateralis thalami and the inferior olive in the cat: an autoradiographic study. J Comp Neurol 162:505–517

    Article  PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Voogd J, Freedman SL (1979) The parasagittal zonation within the olivocerebellar projection. II. Climbing fiber distribution in the intermediate and hemispheric parts of cat cerebellum. J Comp Neurol 183:551–601

    Article  PubMed  CAS  Google Scholar 

  • Haines DE (1977) Cerebellar corticonuclear and corticiovetibular fibers of the flocculonodular lobe in a prosimian primate (Galago senegalensis). J Comp Neurol 174:607–630

    Article  PubMed  CAS  Google Scholar 

  • Haines DE, Patrick GW, Satrulee P (1982) Organization of cerebellar corticonuclear fiber systems. Exp Brain Res 6:320–371

    Article  Google Scholar 

  • Harting JK (1977) Descending pathways from the superior colliculus: an autoradiographic analysis in the rhesus monkey (Macaca mulatta). J Comp Neurol 173:583–612

    Article  PubMed  CAS  Google Scholar 

  • Hawkes R, Herrup K (1995) Aldolase C/zebrin II and the regionalization of the cerebellum. J Mol Neurosci 6:147–158

    Article  PubMed  CAS  Google Scholar 

  • Hawkes R, Leclerc N (1986) Immunocytochemical demonstration of topographic ordering of Purkinje cell axon terminals in the fastigial nucleus of the rat. J Comp Neurol 244:481–491

    Article  PubMed  CAS  Google Scholar 

  • Hawkes R, Leclerc N (1987) Antigenic map of the rat cerebellar cortex: the distribution of parasagittal bands as revealed by monoclonal anti-Purkinje cell antibody mapQ113. J Comp Neurol 256:29–41

    Article  PubMed  CAS  Google Scholar 

  • Hess DT (1982) The tecto-olivo-cerebellar pathway in the rat. Brain Res 250:143–148

    Article  PubMed  CAS  Google Scholar 

  • Hess DT, Voogd J (1986) Chemoarchitectonic zonation of the monkey cerebellum. Brain Res 369:383–387

    Article  PubMed  CAS  Google Scholar 

  • Holmes G, Steward TG (1908) On the connections of the inferior olives with the cerebellum in man. Brain 31:125–137

    Article  Google Scholar 

  • Holstege G, Collewijn H (1982) The efferent connections of the nucleus of the optic tract and the superior colliculus in the rabbit. J Comp Neurol 209:139–175

    Article  PubMed  CAS  Google Scholar 

  • Homma Y, Nonaka S, Matsuyama K, Mori S (1995) Fastigiofugal projection to the brainstem nuclei in the cat: an anterograde PHA-L tracing study. Neurosci Res 23:89–102

    PubMed  CAS  Google Scholar 

  • Huerta MF, Harting JK (1984) Connectional organization of the superior colliculus. Trends Neurosci 7:286–289

    Article  Google Scholar 

  • Huerta MF, Kaas H (1990) Supplementary eye field as defined by intracortical microstimulation: connections in macaques. J Comp Neurol 293:299–330

    Article  PubMed  CAS  Google Scholar 

  • Huerta MF, Frankfurter A, Harting JK (1983) Studies of the principal sensory and spinal trigeminal nuclei of the rat: projections to the superior colliculus, inferior olive and cerebellum. J Comp Neurol 220:147–167

    Article  PubMed  CAS  Google Scholar 

  • Huerta MF, Krubitzer LA, Kaas JH (1986) Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys: I. Subcortical connections. J Comp Neurol 253:415–439

    Article  PubMed  CAS  Google Scholar 

  • Huisman AM, Kuypers HG, Conde F, Keizer K (1983) Collaterals of rubrospinal neurons to the cerebellum in rat. A retrograde fluorescent double labeling study. Brain Res 264:181–196

    Article  PubMed  CAS  Google Scholar 

  • Humphrey DR, Gold R, Reed DJ (1984) Sites, laminar and topographical origins of cortical projections to the major divisions of the red nucleus in the monkey. J Comp Neurol 225:75–94

    Article  PubMed  CAS  Google Scholar 

  • Ito M (2012) The cerebellum. Brain for an implicit self. FT Press, Upper Saddle River

    Google Scholar 

  • Itoh K, Takada M, Yasui Y, Kudo M, Mizuno N (1983) Direct projections from the anterior pretectal nucleus to the dorsal accessory olive in the cat: an anterograde and retrograde WGA-HRP study. Brain Res 272:350–353

    Article  PubMed  CAS  Google Scholar 

  • Jansen J, Brodal A (1940) Experimental studies on the intrinsic fibers of the cerebellum. II. The corticonuclear projection. J Comp Neurol 73:267–321

    Article  Google Scholar 

  • Jansen J, Brodal A (1942) Experimental studies on the intrinsic fibers of the cerebellum. III. Cortico-nuclear projection in the rabbit and the monkey. Norsk Vid Akad Avh 1 Math Nat Kl 3:1–50

    Google Scholar 

  • Jürgens U (1984) The efferent and afferent connections of the supplementary motor area. Brain Res 300:63–81

    Article  PubMed  Google Scholar 

  • Kalil K (1979) Projections of the cerebellar and dorsal column nuclei upon the inferior olive in the rhesus monkey: an autoradiographic study. J Comp Neurol 188:43–62

    Article  PubMed  CAS  Google Scholar 

  • Kawamura K, Onodera S (1984) Olivary projections from the pretectal region in the cat studied with horseradish peroxidase and tritiated amino acids axonal transport. Arch Ital Biol 122:155–168

    PubMed  CAS  Google Scholar 

  • Kawamura S, Hattori S, Higo S, Matsuyama T (1982) The cerebellar projections to the superior colliculus and pretectum in the cat: an autoradiographic and horseradish peroxidase study. Neuroscience 7:1673–1689

    Article  PubMed  CAS  Google Scholar 

  • Kievit J (1979) Cerebello-thalamische projecties en de afferente verbindingen naar de frontaalschors in de rhesusaap. Thesis, Erasmus University, Rotterdam

    Google Scholar 

  • King JS, Martin GF, Bowman MH (1975) The direct spinal area of the inferior olivary nucleus: an electron microscopic study. Exp Brain Res 22:13–24

    Article  PubMed  CAS  Google Scholar 

  • Kitao Y, Nakamura Y, Kudo M, Moriizumi T, Tokuno H (1989) The cerebral and cerebellar connections of pretecto-thalamic and pretecto-olivary neurons in the anterior pretectal nucleus of the cat. Brain Res 484:304–313

    Article  PubMed  CAS  Google Scholar 

  • Kooy FH (1917) The inferior olive in vertebrates. Folia Neurobiol 10:205–369

    Google Scholar 

  • Kuypers HG, Lawrence DG (1967) Cortical projections to the red nucleus and the brain stem in the rhesus monkey. Brain Res 4(2):151–188

    Article  PubMed  CAS  Google Scholar 

  • Langer T, Fuchs AF, Scudder CA, Chubb MC (1985) Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. J Comp Neurol 235:1–25

    Article  PubMed  CAS  Google Scholar 

  • Legendre A, Courville J (1986) Cerebellar nucleocortical projection with a survey of factors affecting the transport of radioactive tracers. J Comp Neurol 252:392–403

    Article  PubMed  CAS  Google Scholar 

  • Leichnetz GR (1982) The medial accessory nucleus of Bechterew: a cell group within the anatomical limits of the rostral oculomotor complex receives a direct prefrontal projection in the monkey. J Comp Neurol 210:147–151

    Article  PubMed  CAS  Google Scholar 

  • Leichnetz GR (2001) Connections of the medial posterior parietal cortex (area 7 m) in the monkey. Anat Rec 263:215–236

    Article  PubMed  CAS  Google Scholar 

  • Leichnetz GR, Gonzalo-Ruiz A (1996) Prearcuate cortex in the cebus monkey has cortical and subcortical connections like the macaque frontal eye field and projects to fastigial-recipient oculomotor-related brainstem nuclei. Brain Res Bull 41:1–29

    Article  PubMed  CAS  Google Scholar 

  • Leichnetz GR, Spencer RF, Smith DJ (1984) Cortical projections to nuclei adjacent to the oculomotor complex in the medial dien-mesencephalic tegmentum in the monkey. J Comp Neurol 228:359–387

    Article  PubMed  CAS  Google Scholar 

  • Leto K, Carletti B, Williams IM, Magrassi L, Rossi F (2006) Different types of cerebellar GABAergic interneurons originate from a common pool of multipotent progenitor cells. J Neurosci 26:11682–11694

    Article  PubMed  CAS  Google Scholar 

  • Loewy AD, Burton H (1978) Nuclei of the solitary tract: efferent projections to the lower brain stem and spinal cord of the cat. J Comp Neurol 181:421–449

    Article  PubMed  CAS  Google Scholar 

  • Lynch JC, Tian JR (2006) Cortico-cortical networks and cortico-subcortical loops for the higher control of eye movements. Prog Brain Res 151:461–501

    Article  PubMed  CAS  Google Scholar 

  • Lynch JC, Hoover JE, Strick PL (1994) Input to the primate frontal eye field from the substantia nigra, superior colliculus, and dentate nucleus demonstrated by transneuronal transport. Exp Brain Res 100:181–186

    Article  PubMed  CAS  Google Scholar 

  • Marechal P (1934) L’olive bulbaire. Anatomie, ontogénèse, phylogenèse, physiologie et physiopathologie. Doin et Cie, Paris

    Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437–470

    PubMed  CAS  Google Scholar 

  • Martin GF, Culberson J, Laxson C, Linauts M, Panneton M, Tschimadia I (1980) Afferent connexions of the inferior olivary nucleus with preliminary notes on their development: studies using the North American opossum. In: Courville J, De Montigny C, Lamarre Y (eds) The inferior olivary nucleus. Raven, New York

    Google Scholar 

  • Matelli M, Luppino G (1996) Thalamic input to mesial and superior area 6 in the macaque monkey. J Comp Neurol 372:59–87

    Article  PubMed  CAS  Google Scholar 

  • Matelli M, Luppino G, Fogassi L, Rizzolatti G (1989) Thalamic input to inferior area 6 and area 4 in the macaque monkey. J Comp Neurol 280:468–488

    Article  PubMed  CAS  Google Scholar 

  • May PJ, Hartwich-Young R, Nelson J, Sparks DL, Porter JD (1990) Cerebellotectal pathways in the macaque: implications for collicular generation of saccades. Neuroscience 36(2):305–324

    Article  PubMed  CAS  Google Scholar 

  • May PJ, Porter JD, Gamlin PD (1992) Interconnections between the primate cerebellum and midbrain near-response regions. J Comp Neurol 315(1):98–116

    Article  PubMed  CAS  Google Scholar 

  • McCrea RA, Baker R (1985) Anatomical connections of the nucleus prepositus of the cat. J Comp Neurol 237:377–407

    Article  PubMed  CAS  Google Scholar 

  • McCrea RA, Bishop GA, Kitai ST (1978) Morphological and electrophysiological characteristics of projection neurons in the nucleus interpositus of the cat cerebellum. J Comp Neurol 181:397–419

    Article  PubMed  CAS  Google Scholar 

  • McCurdy ML, Gibson AR, Houk JC (1992) Spatial overlap of rubrospinal and corticospinal terminals with input to the inferior olive. Neuroimage 1:23–41

    Article  PubMed  CAS  Google Scholar 

  • Mehler WR (1969) Some neurological species differences:a posteriori. Ann NY Acad Sci 167:424–468

    Article  Google Scholar 

  • Miyashita E, Tamai Y (1989) Subcortical connections of frontal ‘oculomotor’ areas in the cat. Brain Res 502:75–87

    Article  PubMed  CAS  Google Scholar 

  • Mizuno N (1966) An experimental study of the spino-olivary fibers in the rabbit and the cat. J Comp Neurol 127:267–292

    Article  PubMed  CAS  Google Scholar 

  • Molinari HH (1984) Ascending somatosensory projections to the dorsal accessory olive: an anatomical study in cats. J Comp Neurol 223:110–123

    Article  PubMed  CAS  Google Scholar 

  • Molinari HH (1985) Ascending somatosensory projections to the medial accessory portion of the inferior olive: a retrograde study in cats. J Comp Neurol 232:523–533

    Article  PubMed  CAS  Google Scholar 

  • Molinari HH, Starr KA (1989) Spino-olivary termination on spines in cat medial accessory olive. J Comp Neurol 288:254–262

    Article  PubMed  CAS  Google Scholar 

  • Molinari HH, Starr KA, Sluyters RN (1991) Gracile projection to the cat medial accessory olive: ultrastructural termination patterns and convergence with spino-olivary projection. J Comp Neurol 309:363–374

    Article  PubMed  CAS  Google Scholar 

  • Molinari HH, Schultze KE, Strominger NL (1996) Gracile, cuneate, and spinal trigeminal projections to inferior olive in rat and monkey. J Comp Neurol 375:467–480

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini E, Oertel WH (1985) GABAergic neurons and terminals in rat CNS as revealed by GAD immuno-histochemistry. In: Björklund A, Hokfelt T (eds) GABA and neuropeptides in the CNS: the handbook of chemical neuroanatomy, Part 1, vol 4. Elsevier, Amsterdam

    Google Scholar 

  • Nakamura Y, Kitao Y, Okoyama S (1983) Projections from the pericruciate cortex to the nucleus of Darkschewitsch and other structures at the mesodiencephalic junction in the cat. Brain Res Bull 10:517–521

    Article  PubMed  CAS  Google Scholar 

  • Nelson BJ, Mugnaini E (1989) Origin of GABAergic inputs to the inferior olive. Exp Brain Res Ser 17:86–107

    Google Scholar 

  • Noda H, Sugita S, Ikeda Y (1990) Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J Comp Neurol 302:330–348

    Article  PubMed  CAS  Google Scholar 

  • Ogawa T (1935) Beiträge zur vergleichende Anatomie des Zentralnervensystems der Wassersäugetiere. Ueber die Kleinhirnkerne der Pinnipedien und Cetaceen. Arb Anat Inst Sendai 17:63–136

    Google Scholar 

  • Ogawa T (1939) The tractus tegmenti medialis and its connection with the inferior olive in the cat. J Comp Neurol 70:181–190

    Article  Google Scholar 

  • Oka H (1988) Functional organization of the parvocellular red nucleus in the cat. Behav Brain Res 28:233–240

    Article  PubMed  CAS  Google Scholar 

  • Onodera S (1984) Olivary projections from the mesodiencephalic structures in the cat studied by means of axonal transport of horseradish peroxidase and tritiated amino acids. J Comp Neurol 227:37–49

    Article  PubMed  CAS  Google Scholar 

  • Orioli PJ, Strick PL (1989) Cerebellar connections with the motor cortex and the arcuate premotor area: an analysis employing retrograde transneuronal transport of WGA-HRP. J Comp Neurol 288:612–626

    Article  PubMed  CAS  Google Scholar 

  • Oscarsson O (1969) Termination and functional organization of the dorsal spino-olivocerebellar path. J Physiol 200:129–149

    PubMed  CAS  Google Scholar 

  • Oscarsson O, Sjölund B (1977a) The ventral spine-olivocerebellar system in the cat. II. Termination zones in the cerebellar posterior lobe. Exp Brain Res 28:487–503

    PubMed  CAS  Google Scholar 

  • Oscarsson O, Sjölund B (1977b) The ventral spino-olivocerebellar system in the cat. I. Identification of five paths and their termination in the cerebellar anterior lobe. Exp Brain Res 28:469–486

    PubMed  CAS  Google Scholar 

  • Oscarsson O, Sjölund B (1977c) The ventral spino-olivocerebellar system in the cat. III. Functional characteristics of the five paths. Exp Brain Res 28:505–520

    PubMed  CAS  Google Scholar 

  • Oscarsson O, Uddenberg N (1966) Somatotopic termination of spino-olivocerebellar path. Brain Res 3:204–207

    Article  PubMed  CAS  Google Scholar 

  • Pijpers A, Voogd J, Ruigrok TJ (2005) Topography of olivo-cortico-nuclear modules in the intermediate cerebellum of the rat. J Comp Neurol 492:193–213

    Article  PubMed  Google Scholar 

  • Porter CM, Van Kan PLE, Horn KM, Bloedel JR, Gibson AR (1993) Functional divisions of cat rMAO. Abstr Soc Neurosci 19:499–510

    Google Scholar 

  • Prevosto V, Graf W, Ugolini G (2009) Cerebellar inputs to intraparietal cortex areas LIP and MIP: functional frameworks for adaptive control of eye movements, reaching, and arm/eye/head movement coordination. Cereb Cortex 20:214–228

    Article  Google Scholar 

  • Probst M (1901) Zur Kenntniss des Beinderams, der Haubenstrahlung und des Regio Subthalamica. Mschr f Psychiat u Neurol 35:692–777

    Article  Google Scholar 

  • Rexed B (1952) The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol 96:441–495

    Article  Google Scholar 

  • Richmond FJ, Courville J, Saint-Cyr JA (1982) Spino-olivary projections from the upper cervical spinal cord: an experimental study using autoradiography and horseradish peroxidase. Exp Brain Res 47:239–251

    Article  PubMed  CAS  Google Scholar 

  • Ruigrok TJ (2003) Collateralization of climbing and mossy fibers projecting to the nodulus and flocculus of the rat cerebellum. J Comp Neurol 466:278–298

    Article  PubMed  Google Scholar 

  • Ruigrok TJ (2004) Precerebellar nuclei and red nucleus. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier, Amsterdam, pp 167–204

    Google Scholar 

  • Ruigrok TJ, Voogd J (1990) Cerebellar nucleo-olivary projections in the rat: an anterograde tracing study with Phaseolus vulgaris-leucoagglutinin (PHA-L). J Comp Neurol 298:315–333

    Article  PubMed  CAS  Google Scholar 

  • Ruigrok TJ, Voogd J (2000) Organization of projections from the inferior olive to the cerebellar nuclei in the rat. J Comp Neurol 426:209–228

    Article  PubMed  CAS  Google Scholar 

  • Ruigrok TJ, Osse RJ, Voogd J (1992) Organization of inferior olivary projections to the flocculus and ventral paraflocculus of the rat cerebellum. J Comp Neurol 316:129–150

    Article  PubMed  CAS  Google Scholar 

  • Saint-Cyr JA (1983) The projection from the motor cortex to the inferior olive in the cat. An experimental study using axonal transport techniques. Neuroscience 10:667–684

    Article  PubMed  CAS  Google Scholar 

  • Saint-Cyr JA (1987) Anatomical organization of cortico-mesencephalo-olivary pathways in the cat as demonstrated by axonal transport techniques. J Comp Neurol 257:39–59

    Article  PubMed  CAS  Google Scholar 

  • Saint-Cyr JA, Courville J (1979) Projection from the vestibular nuclei to the inferior olive in the cat: an autoradiographic and horseradish peroxidase study. Brain Res 165:189–200

    Article  PubMed  CAS  Google Scholar 

  • Saint-Cyr JA, Courville J (1982) Descending projections to the inferior olive from the mesencephalon and superior colliculus in the cat. An autoradiographic study. Exp Brain Res 45:333–348

    Article  PubMed  CAS  Google Scholar 

  • Schonewille M, Luo C, Ruigrok TJ, Voogd J, Schmolesky MT, Rutteman M, Hoebeek FE, De Jeu MT, De Zeeuw CI (2006) Zonal organization of the mouse flocculus: physiology, input, and output. J Comp Neurol 497:670–682

    Article  PubMed  Google Scholar 

  • Scott TG (1964) A unique pattern of localization within the cerebellum of the mouse. J Comp Neurol 22:1–8

    Article  Google Scholar 

  • Shook BL, Schlag-Rey M, Schlag J (1990) Primate supplementary eye field: I. Comparative aspects of mesencephalic and pontine connections. J Comp Neurol 301:618–642

    Article  PubMed  CAS  Google Scholar 

  • Sillitoe RV, Marzban H, Larouche M, Zahedi S, Affanni J, Hawkes R (2005) Conservation of the architecture of the anterior lobe vermis of the cerebellum across mammalian species. Prog Brain Res 148:283–297

    Article  PubMed  Google Scholar 

  • Stanton GB (1980a) Afferents to oculomotor nuclei from area “Y” in Macaca mulatta: an antegrade degeneration study. J Comp Neurol 192:377–385

    Article  PubMed  CAS  Google Scholar 

  • Stanton GB (1980b) Topographical organization of ascending cerebellar projections from the dentate and interposed nuclei in Macaca mulatta: an anterograde degeneration study. J Comp Neurol 190:699–731

    Article  PubMed  CAS  Google Scholar 

  • Steiger HJ, Büttner-Ennever JA (1979) Oculomotor nucleus afferents in the monkey demonstrated with horseradish peroxidase. Brain Res 160:1–15

    Article  PubMed  CAS  Google Scholar 

  • Stilling B (1843) Ueber die Textur und Function der Medulla oblongata. F.Enke, Erlangen

    Google Scholar 

  • Stilling B (1864) Untersuchungen über den Bau des kleinen Gehirns des Menschen. Fischer, Cassel

    Google Scholar 

  • Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–434

    Article  PubMed  CAS  Google Scholar 

  • Strominger NL, Truscott TC, Miller RA, Royce GJ (1979) An autoradiographic study of the rubroolivary tract in the rhesus monkey. J Comp Neurol 183:33–45

    Article  PubMed  CAS  Google Scholar 

  • Sugihara I, Quy PN (2007) Identification of aldolase C compartments in the mouse cerebellar cortex by olivocerebellar labeling. J Comp Neurol 500:1076–1092

    Article  PubMed  CAS  Google Scholar 

  • Sugihara I, Shinoda Y (2004) Molecular, topographic, and functional organization of the cerebellar cortex: a study with combined aldolase C and olivocerebellar labeling. J Neurosci 24:8771–8785

    Article  PubMed  CAS  Google Scholar 

  • Sugihara I, Shinoda Y (2007) Molecular, topographic, and functional organization of the cerebellar nuclei: analysis by three-dimensional mapping of the olivonuclear projection and aldolase C labeling. J Neurosci 27(36):9696–9710

    Article  PubMed  CAS  Google Scholar 

  • Sugihara I, Ebata S, Shinoda Y (2004) Functional compartmentalization in the flocculus and the ventral dentate and dorsal group y nuclei: an analysis of single olivocerebellar axonal morphology. J Comp Neurol 470:113–133

    Article  PubMed  Google Scholar 

  • Sugihara I, Fujita H, Na J, Quy PN, Li BY, Ikeda D (2009) Projection of reconstructed single Purkinje cell axons in relation to the cortical and nuclear aldolase C compartments of the rat cerebellum. J Comp Neurol 512:282–304

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto T, Mizuno N, Uchida K (1982) Distribution of cerebellar fiber terminals in the midbrain visuomotor areas: an autoradiographic study in the cat. Brain Res 238:353–370

    Article  PubMed  CAS  Google Scholar 

  • Swenson RS, Castro AJ (1983a) The afferent connections of the inferior olivary complex in rats. An anterograde study using autoradiographic and axonal degeneration techniques. Neuroscience 8:259–275

    Article  PubMed  CAS  Google Scholar 

  • Swenson RS, Castro AJ (1983b) The afferent connections of the inferior olivary complex in rats: a study using the retrograde transport of horseradish peroxidase. Am J Anat 166:329–341

    Article  PubMed  CAS  Google Scholar 

  • Tan J, Epema AH, Voogd J (1995a) Zonal organization of the flocculovestibular nucleus projection in the rabbit: a combined axonal tracing and acetylcholinesterase histochemical study. J Comp Neurol 356:51–71

    Article  PubMed  CAS  Google Scholar 

  • Tan J, Gerrits NM, Nanhoe R, Simpson JI, Voogd J (1995b) Zonal organization of the climbing fiber projection to the flocculus and nodulus of the rabbit: a combined axonal tracing and acetylcholinesterase histochemical study. J Comp Neurol 356:23–50

    Article  PubMed  CAS  Google Scholar 

  • Tan J, Simpson JI, Voogd J (1995c) Anatomical compartments in the white matter of the rabbit flocculus. J Comp Neurol 356:1–22

    Article  PubMed  CAS  Google Scholar 

  • Teune TM, van der Burg J, van der Moer J, Voogd J, Ruigrok TJH (2000) Topography of cerebellar nuclear projections to the brain stem in the rat. In: Gerrits NM, Ruigrok TJH, De Zeeuw CI (eds) Cerebellar modules: molecules, morphology and function, vol 124. Progr Brain Res Elsevier Science B.V., Amsterdam, pp 141–172

    Chapter  Google Scholar 

  • Thomas A (1897) Le cervelet: étude anatomique, clinique et physiologique. G. Steinheil, Paris

    Google Scholar 

  • Tian JR, Lynch JC (1997) Subcortical input to the smooth and saccadic eye movement subregions of the frontal eye field in cebus monkey. J Neurosci 17:9233–9247

    PubMed  CAS  Google Scholar 

  • Tokuno H, Takada M, Nambu A, Inase M (1995) Somatotopical projections from the supplementary motor area to the red nucleus in the macaque monkey. Exp Brain Res 106:351–355

    Article  PubMed  CAS  Google Scholar 

  • Tolbert DL, Massopust LC, Murphy MG, Young PA (1976) The anatomical organization of the cerebello-olivary projection in the cat. J Comp Neurol 170:525–544

    Article  PubMed  CAS  Google Scholar 

  • Trott JR, Armstrong DM (1987) The cerebellar corticonuclear projection from lobule Vb/c of the cat anterior lobe: a combined electrophysiological and autoradiographic study. Exp Brain Res 68:339–354

    Article  PubMed  CAS  Google Scholar 

  • Trott JR, Apps R, Armstrong DM (1998) Zonal organization of cortico-nuclear and nucleo-cortical projections of the paramedian lobule of the cat cerebellum. 1 the C1 zone. Exp Brain Res 118:298–315

    Article  PubMed  CAS  Google Scholar 

  • Uddenberg N (1968) Differential localization in dorsal funiculus of fibres originating from different receptors. Exp Brain Res 4:367–376

    PubMed  CAS  Google Scholar 

  • Uusisaari M, Knopfel T (2010) GlyT2+ neurons in the lateral cerebellar nucleus. Cerebellum 9:42–55

    Article  PubMed  Google Scholar 

  • Van Ham JJ, Yeo CH (1992) Somatosensory trigeminal projections to the inferior olive, cerebellum and other precerebellar nuclei in rabbits. Eur J Neurosci 4:302–317

    Article  PubMed  Google Scholar 

  • van Kan PLE, Houk JC, Gibson AR (1993) Output organization of intermediate cerebellum of the monkey. J Neurophysiol 69:57–73

    PubMed  Google Scholar 

  • Verhaart WJC (1936) Die zentrale Haubenbahn bei Affen und Menschen. Schweiz Arch Neurol Psychiat 38:270–283

    Google Scholar 

  • Verhaart WJ, Wieringen-Rauws GA (1950) On cerebro-cerebellar atrophy. Folia Psychiatr Neurol Neurochir Neerl 53:481–501

    PubMed  CAS  Google Scholar 

  • von Hartmann-Monakow KH, Akert K, Künzle H (1979) Projections of precentral and premotor cortex to the red nucleus and other midbrain areas in Macaca fascicularis. Exp Brain Res 34:91–105

    Google Scholar 

  • Voogd J (1964) The cerebellum of the cat. Van Gorcum, Assen

    Google Scholar 

  • Voogd J (1969) The importance of fiber connections in the comparative anatomy of the mammalian cerebellum. In: Llinas R (ed) Neurobiology of cerebellar evolution and development. AMA, Chicago, pp 493–514

    Google Scholar 

  • Voogd J (2004) Cerebellum and precerebellar nuclei. In: Paxinos G, Mai JK (eds) The human nervous system. Elsevier, Amsterdam, pp 322–392

    Google Scholar 

  • Voogd J, Barmack NH (2006) Oculomotor cerebellum. Prog Brain Res 151:231–268

    Article  PubMed  Google Scholar 

  • Voogd J, Bigaré F (1980) Topographical distribution of olivary and cortico-nuclear fibres in the cerebellum: a review. In: Courville J (ed) The olivary nucleus. Anatomy and physiology. Raven, New York, pp 207–234

    Google Scholar 

  • Voogd J, Ruigrok TJ (2004) The organization of the corticonuclear and olivocerebellar climbing fiber projections to the rat cerebellar vermis: the congruence of projection zones and the zebrin pattern. J Neurocytol 33:5–21

    Article  PubMed  Google Scholar 

  • Voogd J, Gerrits NM, Hess DT (1987a) Parasagittal zonation of the cerebellum in macaques: an analysis based on acetylcholinesterase histochemistry. In: Glickstein M, Yeo C, Stein J (eds) Cerebellum and neuronal plasticity. Plenum Press, London, pp 15–39

    Chapter  Google Scholar 

  • Voogd J, Hess DT, Marani E (1987b) The parasagittal zonation of the cerebellar cortex in cat and monkey. Topography, distribution of acetylcholinesterase and development. In: King JS (ed) New concepts in cerebellar neurobiology. Liss, New York, pp 183–220

    Google Scholar 

  • Voogd J, Gerrits NM, Ruigrok TJ (1996) Organization of the vestibulocerebellum. Ann NY Acad Sci 781:553–579

    Article  PubMed  CAS  Google Scholar 

  • Voogd J, Pardoe J, Ruigrok TJ, Apps R (2003) The distribution of climbing and mossy fiber collateral branches from the copula pyramidis and the paramedian lobule: congruence of climbing fiber cortical zones and the pattern of zebrin banding within the rat cerebellum. J Neurosci 23:4645–4656

    PubMed  CAS  Google Scholar 

  • Voogd J, Schraa-Tam CK, van der Geest JN, De Zeeuw CI (2011) Visuomotor cerebellum in human and nonhuman primates. Cerebellum. doi:10.1007/s12311-010-0204-7

    Google Scholar 

  • Walberg F (1982) The trigemino-olivary projection in the cat as studied with retrograde transport of horseradish peroxidase. Exp Brain Res 45:101–107

    Article  PubMed  CAS  Google Scholar 

  • Weber JT, Partlow GD, Harting JK (1978) The projection of the superior colliculus upon the inferior olivary complex of the cat: an autoradiographic and horseradish peroxidase study. Brain Res 144:369–377

    Article  PubMed  CAS  Google Scholar 

  • Weidenreich F (1899) Zur Anatomie der zentralen Kleinhirnkerne der Säuger. Z Morphol Anthropol 1:259–312

    Google Scholar 

  • Whitworth RH Jr, Haines DE (1983) The inferior olive of a prosimian primate Galago senegalensis. I. Conformation and spino-olivary projections. J Comp Neurol 219:215–227

    Article  PubMed  Google Scholar 

  • Whitworth RH Jr, Haines DE (1986a) The inferior olive of Saimiri sciureus: olivocerebellar projections to the anterior lobe. Brain Res 372:55–71

    Article  PubMed  Google Scholar 

  • Whitworth RH Jr, Haines DE (1986b) On the question of nomenclature of homologous subdivisions of the inferior olivary complex. Arch Ital Biol 124:271–317

    PubMed  Google Scholar 

  • Wiberg M, Blomqvist A (1984a) The projection to the mesencephalon from the dorsal column nuclei. An anatomical study in the cat. Brain Res 311:225–244

    Article  PubMed  CAS  Google Scholar 

  • Wiberg M, Blomqvist A (1984b) The spinomesencephalic tract in the cat: its cells of origin and termination pattern as demonstrated by the intraaxonal transport method. Brain Res 291:1–18

    Article  PubMed  CAS  Google Scholar 

  • Wiberg M, Westman J, Blomqvist A (1986) The projection to the mesencephalon from the sensory trigeminal nuclei. An anatomical study in the cat. Brain Res 399:51–68

    Article  PubMed  CAS  Google Scholar 

  • Wiberg M, Westman J, Blomqvist A (1987) Somatosensory projection to the mesencephalon: an anatomical study in the monkey. J Comp Neurol 264:92–117

    Article  PubMed  CAS  Google Scholar 

  • Wiesendanger R, Wiesendanger M (1985) Cerebello-cortical linkage in the monkey as revealed by transcellular labeling with the lectin wheat germ agglutinin conjugated to the marker horseradish peroxidase. Exp Brain Res 59:105–117

    PubMed  CAS  Google Scholar 

  • Wylie DR, De Zeeuw CI, DiGiorgi PL, Simpson JI (1994) Projections of individual Purkinje cells of identified zones in the ventral nodulus to the vestibular and cerebellar nuclei in the rabbit. J Comp Neurol 349:448–463

    Article  PubMed  CAS  Google Scholar 

  • Xiong G, Nagao S (2002) The lobulus petrosus of the paraflocculus relays cortical visual inputs to the posterior interposed and lateral cerebellar nuclei: an anterograde and retrograde tracing study in the monkey. Exp Brain Res 147:252–263

    Article  PubMed  Google Scholar 

  • Yamamoto M (1978) Localization of rabbit’s flocculus Purkinje cells projecting to cerebellar lateral nucleus and the nucleus prepositus hypoglossi investigated by means of the horseradish peroxidase retrograde transport. Neurosci Lett 7:197–202

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M (1979) Topographical representation in rabbit flocculus for various afferent inputs from the brain stem investigated by means of retrograde transport of horseradish peroxidase. Neurosci Lett 12:29–34

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto F, Sato Y, Kawasaki T (1986) The neuronal pathway from the flocculus to the oculomotor nucleus: an electrophysiological study of group y neurons in cats. Brain Res 371:350–354

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Voogd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Voogd, J., Shinoda, Y., Ruigrok, T.J.H., Sugihara, I. (2013). Cerebellar Nuclei and the Inferior Olivary Nuclei: Organization and Connections. In: Manto, M., Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1333-8_19

Download citation

Publish with us

Policies and ethics