Context-Aware Graph-Based Visualized Clustering Approach (CAVCA) | SpringerLink
Skip to main content

Context-Aware Graph-Based Visualized Clustering Approach (CAVCA)

  • Chapter
  • First Online:
Advanced Computing and Systems for Security

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 395))

  • 1666 Accesses

Abstract

The Clustering algorithms cannot detect the number of clusters for unlabeled data. The visual access tendency (VAT) is recognized as the best approach for cluster detection. However, context-aware-based graphs (CAG) give more informative cluster assessment for VAT. Hence, we extend the VAT using CAG, known as CAVAT. This paper investigates the existing cluster detection methods and proposes a data clustering method for the CAVAT for archiving the efficient clustering results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. In: Proceedings of 16th ACM Symposium on Computational Geometry, pp. 1–21 (2000)

    Google Scholar 

  2. Jain, A.K., Murthy, M.N., Flynn, P.J.: Data clustering : a review. ACM Comp. Surveys 31(3), 264–323 (1999)

    Article  Google Scholar 

  3. Ester, M., Kriegel, P., Sander, J., Xu, X.: A density based algorithm for discovering clusters in large databases with noise. Int Conf. Knowl. Disc. Data Min. 226–231 (1996)

    Google Scholar 

  4. Zahn, C.T.: Graph theoretical methods for detecting and describing gestalt clusters. IEEE Trans. Comput. 20(1), 68–86 (1971)

    Article  MATH  Google Scholar 

  5. Bezdek, J., Hathaway, R.: VAT: A Tool for Visual Assessment (Cluster) Tendency, pp. 2225–2230. Proc. IJCNN, Honolulu (2002)

    Google Scholar 

  6. Wang, L. et al.: Enhanced visual analysis for cluster tendency assessment. Adv. Knowl Data Mining, LNCS, 6118, 16–27(2010)

    Google Scholar 

  7. Havens, T.C., Bezdek, J.C.: An efficient formulation of the improved visual assessment of cluster tendency. IEEE Trans. Knowl. Data Eng. (2012)

    Google Scholar 

  8. Rajendra Prasad, K., Eswara Reddy, B.: An efficient visualized clustering approach for various datasets. IEEE SPICES 1–5 (2015)

    Google Scholar 

  9. Eswara Reddy, B., Rajendra Prasad, K.: Improving the performance of visualized clustering method. Int. J. Syst. Assur. Eng. (IJSA), Springer (2015)

    Google Scholar 

  10. Li, X., Hu, W., Shen, C., Dick, A., Zhang, Z.: Context-aware hyeprgraph construction for robust spectral clustering. IEEE Trans. Knowl. Data Eng. 26(10) (2014)

    Google Scholar 

  11. Zhou, D., Huang, J., et al.: Learning with hypergraphs: clustering, classification, and embedding. P. NIPS (2006)

    Google Scholar 

  12. Dubes, R.C., Jain, A.K.: Clustering methodology in exploratory data analysis. In: Yovits, M.C. (ed.) Advances in Computers. Academic Press, New York (1980)

    Google Scholar 

  13. Ozertem, U., Erdogmus, D., et al.: Mean Shift spectral clustering. Patt. Recog. 41(4), 1924–1938 (2008)

    Article  MATH  Google Scholar 

  14. Senoussaoui, M., et al.: A study of the cosine distance-based mean shift for telephone speech diarization. IEEE Trans. Audio Speech Lang. Proc. 22(1) (2014)

    Google Scholar 

  15. Tang, H., Chu, S.M.: Partially supervised speaker clustering. IEEE Trans. Pattern Anal. Mach. Intell. 34(5), 959–971 (2012)

    Article  Google Scholar 

  16. Wang, L., Nguyen, T., Bezdek, J., Leckie, C., Rammohanara, K.: iVAT and aVAT: enhanced visual analysis for clustering tendency assessment. Proc. PAKDD, India (Jun 2010)

    Google Scholar 

  17. Sledge, I.J., Huband, J.M., Bezdek, J.C.: (Automatic) Cluster count extraction from unlabeled data sets. In: Fifth International Conference on Fuzzy Systems and Knowledge Discovery IEEE Computer Society, pp. 3–13

    Google Scholar 

  18. Hathway, R., et al.: Scalable visual assessment of cluster tendency. Patt. Rec. 39, 1315–1324 (2006)

    Article  MATH  Google Scholar 

  19. Bezdek, J.C., et al.: Visual assessment of clustering tendency for rectangular dissimilarity matrices. IEEE Trans. Fuzzy Syst. 15(5), 890–903 (2007)

    Article  Google Scholar 

  20. Huband, J., et al.: Bigvat: visual assessment of clustering tendency for large datasets. Pattern Recogn. 38(11), 1875–1886 (2005)

    Article  Google Scholar 

  21. Wang, L., et al.: Enhanced visual analysis for cluster tendency assessment and data partitioning. IEEE Trans. Knowl. Data Eng. 22(10), 1401–1413 (2010)

    Google Scholar 

  22. Belkin, M., Niyogi, P.: Laplacian Eigenmaps and spectral techniques for embedding and clustering. Adv. Neu. Inf. Proc. Sys. MIT Press (2002)

    Google Scholar 

  23. Wang, X., Mitchell, D.: A divide-and conquer approach for minimum spanning tree-based clustering 21(7), 945–958 (2009)

    Google Scholar 

  24. Weiss, Y.: Segmentation using Eigen vectors: a unifying view. Proc. IEEE Int. Conf. Comput. Vision 975–982 (1999)

    Google Scholar 

  25. http://archive.ics.uci.edu/ml/datasets.html. (2002)

  26. Kabal, P.: Audio File web document. http://WWW.TSP.ECE.McGill.CA/Docs/AudioFormats

  27. Cai, D., He, X., Han, J.: Document clustering using locality preserving indexing. IEEE Trans. Knowl. Data Eng. 17(2), 1624–1637 (2005)

    Article  Google Scholar 

  28. Lovasz, L., Plummer, M.: Matching Theory. Budapest, Northholland (1986)

    MATH  Google Scholar 

  29. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Rajendra Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Rajendra Prasad, K., Eswara Reddy, B. (2016). Context-Aware Graph-Based Visualized Clustering Approach (CAVCA). In: Chaki, R., Cortesi, A., Saeed, K., Chaki, N. (eds) Advanced Computing and Systems for Security. Advances in Intelligent Systems and Computing, vol 395. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2650-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2650-5_16

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2648-2

  • Online ISBN: 978-81-322-2650-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics