Abstract
This paper aims to combine fuzzy and technique for order preference by simulation of ideal solution (TOPSIS) to solve the multi-response parameters optimization problem in green manufacturing. From the viewpoint of health and environment, tap water is used as working fluid, since it does not release the harmful gases. This work considers discharge current, pulse width/pulse interval ratio, gap voltage, and lifting height are the input parameters and output parameters have been identified as material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). In this paper, initially, an experiment was performed using Taguchi experimental technique. Thereafter, fuzzy-TOPSIS is used to convert multi-response parameters into a single response parameter. Finally, the ranking of the parameter decides the best experimental setup and optimized the input-process parameters. In this work, weighting factors for the output parameters are determined using triangular fuzzy number which influences correlation coefficient values for finding the finest experimental setup. Additionally, an attempt has been made to compare the proposed methodology with the gray relational analysis (GRA). The numerical result shows that the optimum process parameters are A1 (4.5 A), B1 (30:70 μs), C3 (30 V), and D4 (6 mm) and using tap water machining Ti-6Al-4V material can produce high MRR, decrease the machining cost, and have no harmful to the operators and environment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Pandey, A., Singh, S.: Current research trends in variants of electrical discharge machining: a review. Int. J. Eng. Sci. Technol. 2(6), 2172–2191 (2010)
Leao, F.N., Pashby, I.R.: A review on the use of environmentally friendly dielectric fluids in electrical discharge machining. J. Mater. Process. Technol. 149(1–3), 341–346 (2004)
Abbas, N.M., Solomon, D.G., Bahari, M.F.: A review on current research trends in electrical discharge machining (EDM). Int. J. Mach. Tools Manuf. 47(7–8), 1214–1228 (2007)
Singh, S., Bhardwaj, A.: Review to EDM by using water and powder-mixed dielectric fluid. J. Min. Mater. Charact. Eng. 10(2), 199–230 (2011)
Abbas, N.M., Yusoff, N.: Electrical discharge machining (EDM): practices in Malaysian industries and possible change towards green manufacturing. Procedia Eng. 41, 1684–1688 (2012)
Sheng, P., Srinivasan, M.: Multi-objective process planning in environmentally conscious manufacturing: a feature-based approach. Ann. CIRP 44(1), 433–437 (1995)
Abbas, N.M., Solomon, D.G., Bahari, M.F.: A review on current research trends in electrical discharge machining (EDM). Int. J. Mach. Tool Manuf. 47, 1214–1228 (2007)
Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)
Roy, B.: Decision-aid and decision-making. Eur. J. Oper. Res. 45, 324–331 (1990)
Kumar, R., Jagadish, Ray, A.: Selection of material for optimal design using multi-criteria decision making. Procedia Material Science. (2014) (Accepted for publication)
Caliskan, H., Kursuncu, B., Kurbanoglu, C., Guven, Y.S.: Material selection for the tool holder working under hard milling conditions using different multi criteria decision making methods. Mater. Des. 45, 473–479 (2013)
Kumar, R., Jagadish, Ray, A.: Selection of material: a multi-objective decision making approach. Presented at the international conference on industrial engineering, SVNIT, and Surat, India. Proceeding of ICIE-2013 with ISBN 978-93-83083-37-4,162-165 (2013)
Kumar, R., Jagadish, Ray, A.: Selection of cutting tool materials: a holistic approach. Presented at the 1st International Conferences on Mechanical Engineering. Emerging Trends For Sustainability, MANIT, vol. 5028. Bhopal, India. pp. 447–452 (2014)
Saket, S., Purbey, V., Jagadish, Ray, A.: Multi attributes decision making for mobile phone selection. Int. J. Res. Eng. Technol. 03(03), 497–501 (2014)
Deng, J.L.: Introduction to grey system. J. Grey Syst. 1(1), 1–24 (1989)
Tan, X.C., Liu, F., Cao, H.J., Zhang, H.: A decision-making framework model of cutting fluid selection for green manufacturing and a case study. J. Mater. Process. Technol. 129, 467–470 (2002)
Yeo, S.H., New, A.K.: A method for green process planning in EDM. Int. J. Adv. Manuf. Technol. 15, 287–291 (1999)
Abbas, N.M., Yusoff, N., Wahab, R.M.: Electrical discharge machining (EDM): practices in Malaysian industries and possible change towards green manufacturing. Proc. Eng. 41, 1684–1688 (2012)
Jagadish, Ray, A. Cutting fluid selection for sustainable design for manufacturing: an integrated theory. Procedia Material Science. (2014) (Accepted for publication)
Ray, Jagadish: A. Green cutting fluid selection using MOOSRA method. Int. J. Res. Eng. Technol. 03(03), 559–563 (2014)
Pradhan, M.K.: Estimating the effect of process parameters on surface integrity of EDMed AISI D2 tool steel by response surface methodology coupled with grey relational analysis. Int. J. Adv. Manuf. Technol. 67, 2051–2062 (2013)
Jagadish, Ray, A.: Green cutting fluid selection using multi-attribute decision making approach. J. Inst. Eng. India Ser C (2014) doi:10.1007/s40032-014-0126-0
Jagadish, Ray, A. Multi-objective optimization of green EDM: an integrated theory. J. Inst. Eng. India Ser C (2014) doi:10.1007/s40032-014-0142-0
Mandal, D., Pal, S.K., Saha, P.: Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II. J. Mater. Process. Technol. 186(1–3), 154–162 (2007)
Dvivedi, A., Kumar, P., Singh, I.: Experimental investigation and optimisation in EDM of Al 6063 SiCp metal matrix composite. Int. J. Mach. Machb. Mater. 3(3–4), 293–308 (2008)
Kanagarajan, D., Karthikeyan, R., Palanikumar, K., Sivaraj, P.: Influence of process parameters on electric-discharge machining of WC/30 %Co composites. P I Mech. Eng. B-J Eng. 222(7), 807–815 (2008)
Chiang, K.: Modeling and analysis of the effects of machining parameters on the performance characteristics in the EDM process of Al2O3 + TiC mixed ceramic. Int. J. Adv. Manuf. Technol. 37(5–6), 523–533 (2008)
Kuppan, P., Rajadurai, A., Narayanan, S.: Influence of EDM process parameters in deep hole drilling of Inconel 718. Int. J. Adv. Manuf. Technol. 38(1–2), 74–84 (2007)
Pradhan, M.K., Biswas, C.K.: Multi-response optimisation of EDM AISI D2 tool steel using response surface methodology. Int. J. Mach. Machb. Mater. 9(1–2), 66–85 (2011)
Medellin, H.I., De Lange, D.F., Morales, J., Flores, A.: Experimental study on electro discharge machining in water of D2 tool steel using two different electrode materials. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 223(11), 1423–1430 (2009)
Chen, S.L., Yan, B.H., Huang, F.Y.: Influence of kerosene and distilled water as dielectrics on the electric discharge machining characteristics of Ti-6Al-4V. J. Mater. Process. Technol. 87, 107–111 (1999)
Zhang, Y., Liu, Y., Ji, R., Cai, B., Shen, Y.: Sinking EDM in water in-oil emulsion. Int. J. Adv. Manuf. Technol. 65(5–8), 705–716 (2013)
Yan, B.H., Tsai, H.C., Huang, F.Y.: The effect in EDM of a dielectric of a urea solution in water on modifying the surface of titanium. Int. J. Mach. Tools Manuf. 45(2), 194–200 (2005)
Nguyen, M.D., Rahman, M., Wong, Y.S.: An experimental study on micro-EDM in low-resistivity deionized water using short voltage pulses. Int. J. Adv. Manuf. Technol. 58(5–8), 533–544 (2012)
Hascalık, A., Caydas, U.: Electrical discharge machining of titanium alloy (Ti-6Al-4V). Appl. Surf. Sci. 253, 9007–9016 (2007)
Gu, L., Li, L., Zhao, W., Rajurkar, K.P.: Electrical discharge machining of Ti6Al4V with a bundled electrode. Int. J. Mach. Tools Manuf. 53, 100–106 (2012)
Kansal, H.K., Singh, S., Kumar, P.: Technology and research developments in powder mixed electric discharge machining (PMEDM). J. Mater. Process. Technol. 184, 32–41 (2007)
Kansal, H.K., Singh, S., Kumar, P.: Numerical simulation of powder mixed electric discharge machining (PMEDM) using finite element method. Math. Comput. Model. 47, 1217–1237 (2008)
Ekmekci, B.: Residual stresses and white layer in electric discharge machining (EDM). Appl. Surf. Sci. 253, 9234–9240 (2007)
Zhang, Y., Liu, Y., Ji, R., Cai, B.: Study of the recast layer of a surface machined by sinking electrical discharge machining using water-in-oil emulsion as dielectric. Appl. Surf. Sci. 257(14), 5989–5997 (2011)
Kumar, J., Khamba, J.S.: Modeling the material removal rate in ultrasonic machining of titanium using dimensional analysis. Int. J. Adv. Manuf. Technol. 48(1–4), 103–119 (2010)
Ghoreishi, M., Atkinson, J.: A comparative experimental study of machining characteristics in vibratory, rotary and vibro-rotary electro-discharge machining. J. Mater. Process. Technol. 120(1–3), 374–384 (2002)
Abdullah, A., Shabgard, M.R.: Effect of ultrasonic vibration of tool on electrical discharge machining of cemented-tungsten carbide (WC-Co). Int. J. Adv. Manuf. Technol. 38, 1137–1147 (2008)
Kibria, G., Sarkar, B.R., Pradhan, B.B., Bhattacharyya, B.: Comparative study of different dielectrics for micro-EDM performance during microhole machining of Ti-6Al-4V alloy. Int. J. Adv. Manuf. Technol. 48(5–8), 557–570 (2010)
Teimouri, R., Baseri, H.: Experimental study of rotary magnetic field-assisted dry EDM with ultrasonic vibration of workpiece. Int. J. Adv. Manuf. Technol. 67(5–8), 1371–1384 (2013)
Chattopadhyay, K.D., Satangi, P.S., Verma, S., Sherma, P.C.: Analysis of rotary electrical discharge machining characteristics in reversal magnetic field for copper-en8 steel system. Int. J. Adv. Manuf. Technol. 38, 925–937 (2008)
Lin, J.L., Lin, C.L.: The use of the orthogonal array with grey relational analysis to optimize the electrical discharge machining process with multiple performance characteristics. Int. J. Mach. Tools Manuf. 42(2), 237–244 (2002)
Tzeng, C.J., Lin, Y.H., Yang, Y.K., Jeng, M.C.: Optimization of turning operations with multiple performance characteristics using the Taguchi method and grey relational analysis. J. Mater. Process. Technol. 209(6), 2753–2759 (2009)
Sivapirakasam, S.P., Mathew, J., Surianarayanan, M.: Multi attribute decision making for green electrical discharge machining. Expert Syst. Appl. 38(7), 8370–8374 (2011)
Tang, L., Du, Y.T.: Experimental study on green electrical discharge machining in tap water of Ti-6Al-4V and parameters optimization. Int. J. Adv. Manuf. Technol. 70, 469–475 (2014)
Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
Bortolan, G., Degami, R.: A review of some methods for ranking fuzzy subset. Fuzzy Set Syst. 15(1), 1–19 (1985)
Tong, L.I., Su, C.T.: Optimizing multi-response problems in the Taguchi method by fuzzy multiple attribute decision making. Int. Qual. Reliab. Eng. 13, 25–34 (1997)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer India
About this paper
Cite this paper
Jagadish, Ray, A. (2015). A Fuzzy Multi-criteria Decision-making Model for Green Electrical Discharge Machining. In: Das, K., Deep, K., Pant, M., Bansal, J., Nagar, A. (eds) Proceedings of Fourth International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 335. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2217-0_4
Download citation
DOI: https://doi.org/10.1007/978-81-322-2217-0_4
Published:
Publisher Name: Springer, New Delhi
Print ISBN: 978-81-322-2216-3
Online ISBN: 978-81-322-2217-0
eBook Packages: EngineeringEngineering (R0)