A Fuzzy Multi-criteria Decision-making Model for Green Electrical Discharge Machining | SpringerLink
Skip to main content

A Fuzzy Multi-criteria Decision-making Model for Green Electrical Discharge Machining

  • Conference paper
  • First Online:
Proceedings of Fourth International Conference on Soft Computing for Problem Solving

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 335))

Abstract

This paper aims to combine fuzzy and technique for order preference by simulation of ideal solution (TOPSIS) to solve the multi-response parameters optimization problem in green manufacturing. From the viewpoint of health and environment, tap water is used as working fluid, since it does not release the harmful gases. This work considers discharge current, pulse width/pulse interval ratio, gap voltage, and lifting height are the input parameters and output parameters have been identified as material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR). In this paper, initially, an experiment was performed using Taguchi experimental technique. Thereafter, fuzzy-TOPSIS is used to convert multi-response parameters into a single response parameter. Finally, the ranking of the parameter decides the best experimental setup and optimized the input-process parameters. In this work, weighting factors for the output parameters are determined using triangular fuzzy number which influences correlation coefficient values for finding the finest experimental setup. Additionally, an attempt has been made to compare the proposed methodology with the gray relational analysis (GRA). The numerical result shows that the optimum process parameters are A1 (4.5 A), B1 (30:70 μs), C3 (30 V), and D4 (6 mm) and using tap water machining Ti-6Al-4V material can produce high MRR, decrease the machining cost, and have no harmful to the operators and environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pandey, A., Singh, S.: Current research trends in variants of electrical discharge machining: a review. Int. J. Eng. Sci. Technol. 2(6), 2172–2191 (2010)

    Google Scholar 

  2. Leao, F.N., Pashby, I.R.: A review on the use of environmentally friendly dielectric fluids in electrical discharge machining. J. Mater. Process. Technol. 149(1–3), 341–346 (2004)

    Article  Google Scholar 

  3. Abbas, N.M., Solomon, D.G., Bahari, M.F.: A review on current research trends in electrical discharge machining (EDM). Int. J. Mach. Tools Manuf. 47(7–8), 1214–1228 (2007)

    Article  Google Scholar 

  4. Singh, S., Bhardwaj, A.: Review to EDM by using water and powder-mixed dielectric fluid. J. Min. Mater. Charact. Eng. 10(2), 199–230 (2011)

    Google Scholar 

  5. Abbas, N.M., Yusoff, N.: Electrical discharge machining (EDM): practices in Malaysian industries and possible change towards green manufacturing. Procedia Eng. 41, 1684–1688 (2012)

    Article  Google Scholar 

  6. Sheng, P., Srinivasan, M.: Multi-objective process planning in environmentally conscious manufacturing: a feature-based approach. Ann. CIRP 44(1), 433–437 (1995)

    Article  Google Scholar 

  7. Abbas, N.M., Solomon, D.G., Bahari, M.F.: A review on current research trends in electrical discharge machining (EDM). Int. J. Mach. Tool Manuf. 47, 1214–1228 (2007)

    Article  Google Scholar 

  8. Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)

    MATH  Google Scholar 

  9. Roy, B.: Decision-aid and decision-making. Eur. J. Oper. Res. 45, 324–331 (1990)

    Article  Google Scholar 

  10. Kumar, R., Jagadish, Ray, A.: Selection of material for optimal design using multi-criteria decision making. Procedia Material Science. (2014) (Accepted for publication)

    Google Scholar 

  11. Caliskan, H., Kursuncu, B., Kurbanoglu, C., Guven, Y.S.: Material selection for the tool holder working under hard milling conditions using different multi criteria decision making methods. Mater. Des. 45, 473–479 (2013)

    Article  Google Scholar 

  12. Kumar, R., Jagadish, Ray, A.: Selection of material: a multi-objective decision making approach. Presented at the international conference on industrial engineering, SVNIT, and Surat, India. Proceeding of ICIE-2013 with ISBN 978-93-83083-37-4,162-165 (2013)

    Google Scholar 

  13. Kumar, R., Jagadish, Ray, A.: Selection of cutting tool materials: a holistic approach. Presented at the 1st International Conferences on Mechanical Engineering. Emerging Trends For Sustainability, MANIT, vol. 5028. Bhopal, India. pp. 447–452 (2014)

    Google Scholar 

  14. Saket, S., Purbey, V., Jagadish, Ray, A.: Multi attributes decision making for mobile phone selection. Int. J. Res. Eng. Technol. 03(03), 497–501 (2014)

    Google Scholar 

  15. Deng, J.L.: Introduction to grey system. J. Grey Syst. 1(1), 1–24 (1989)

    MATH  Google Scholar 

  16. Tan, X.C., Liu, F., Cao, H.J., Zhang, H.: A decision-making framework model of cutting fluid selection for green manufacturing and a case study. J. Mater. Process. Technol. 129, 467–470 (2002)

    Article  Google Scholar 

  17. Yeo, S.H., New, A.K.: A method for green process planning in EDM. Int. J. Adv. Manuf. Technol. 15, 287–291 (1999)

    Article  Google Scholar 

  18. Abbas, N.M., Yusoff, N., Wahab, R.M.: Electrical discharge machining (EDM): practices in Malaysian industries and possible change towards green manufacturing. Proc. Eng. 41, 1684–1688 (2012)

    Article  Google Scholar 

  19. Jagadish, Ray, A. Cutting fluid selection for sustainable design for manufacturing: an integrated theory. Procedia Material Science. (2014) (Accepted for publication)

    Google Scholar 

  20. Ray, Jagadish: A. Green cutting fluid selection using MOOSRA method. Int. J. Res. Eng. Technol. 03(03), 559–563 (2014)

    Google Scholar 

  21. Pradhan, M.K.: Estimating the effect of process parameters on surface integrity of EDMed AISI D2 tool steel by response surface methodology coupled with grey relational analysis. Int. J. Adv. Manuf. Technol. 67, 2051–2062 (2013)

    Article  Google Scholar 

  22. Jagadish, Ray, A.: Green cutting fluid selection using multi-attribute decision making approach. J. Inst. Eng. India Ser C (2014) doi:10.1007/s40032-014-0126-0

  23. Jagadish, Ray, A. Multi-objective optimization of green EDM: an integrated theory. J. Inst. Eng. India Ser C (2014) doi:10.1007/s40032-014-0142-0

  24. Mandal, D., Pal, S.K., Saha, P.: Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II. J. Mater. Process. Technol. 186(1–3), 154–162 (2007)

    Article  Google Scholar 

  25. Dvivedi, A., Kumar, P., Singh, I.: Experimental investigation and optimisation in EDM of Al 6063 SiCp metal matrix composite. Int. J. Mach. Machb. Mater. 3(3–4), 293–308 (2008)

    Google Scholar 

  26. Kanagarajan, D., Karthikeyan, R., Palanikumar, K., Sivaraj, P.: Influence of process parameters on electric-discharge machining of WC/30 %Co composites. P I Mech. Eng. B-J Eng. 222(7), 807–815 (2008)

    Google Scholar 

  27. Chiang, K.: Modeling and analysis of the effects of machining parameters on the performance characteristics in the EDM process of Al2O3 + TiC mixed ceramic. Int. J. Adv. Manuf. Technol. 37(5–6), 523–533 (2008)

    Article  Google Scholar 

  28. Kuppan, P., Rajadurai, A., Narayanan, S.: Influence of EDM process parameters in deep hole drilling of Inconel 718. Int. J. Adv. Manuf. Technol. 38(1–2), 74–84 (2007)

    Google Scholar 

  29. Pradhan, M.K., Biswas, C.K.: Multi-response optimisation of EDM AISI D2 tool steel using response surface methodology. Int. J. Mach. Machb. Mater. 9(1–2), 66–85 (2011)

    Google Scholar 

  30. Medellin, H.I., De Lange, D.F., Morales, J., Flores, A.: Experimental study on electro discharge machining in water of D2 tool steel using two different electrode materials. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 223(11), 1423–1430 (2009)

    Article  Google Scholar 

  31. Chen, S.L., Yan, B.H., Huang, F.Y.: Influence of kerosene and distilled water as dielectrics on the electric discharge machining characteristics of Ti-6Al-4V. J. Mater. Process. Technol. 87, 107–111 (1999)

    Article  Google Scholar 

  32. Zhang, Y., Liu, Y., Ji, R., Cai, B., Shen, Y.: Sinking EDM in water in-oil emulsion. Int. J. Adv. Manuf. Technol. 65(5–8), 705–716 (2013)

    Article  Google Scholar 

  33. Yan, B.H., Tsai, H.C., Huang, F.Y.: The effect in EDM of a dielectric of a urea solution in water on modifying the surface of titanium. Int. J. Mach. Tools Manuf. 45(2), 194–200 (2005)

    Article  Google Scholar 

  34. Nguyen, M.D., Rahman, M., Wong, Y.S.: An experimental study on micro-EDM in low-resistivity deionized water using short voltage pulses. Int. J. Adv. Manuf. Technol. 58(5–8), 533–544 (2012)

    Article  Google Scholar 

  35. Hascalık, A., Caydas, U.: Electrical discharge machining of titanium alloy (Ti-6Al-4V). Appl. Surf. Sci. 253, 9007–9016 (2007)

    Article  Google Scholar 

  36. Gu, L., Li, L., Zhao, W., Rajurkar, K.P.: Electrical discharge machining of Ti6Al4V with a bundled electrode. Int. J. Mach. Tools Manuf. 53, 100–106 (2012)

    Article  Google Scholar 

  37. Kansal, H.K., Singh, S., Kumar, P.: Technology and research developments in powder mixed electric discharge machining (PMEDM). J. Mater. Process. Technol. 184, 32–41 (2007)

    Article  Google Scholar 

  38. Kansal, H.K., Singh, S., Kumar, P.: Numerical simulation of powder mixed electric discharge machining (PMEDM) using finite element method. Math. Comput. Model. 47, 1217–1237 (2008)

    Article  MATH  Google Scholar 

  39. Ekmekci, B.: Residual stresses and white layer in electric discharge machining (EDM). Appl. Surf. Sci. 253, 9234–9240 (2007)

    Article  Google Scholar 

  40. Zhang, Y., Liu, Y., Ji, R., Cai, B.: Study of the recast layer of a surface machined by sinking electrical discharge machining using water-in-oil emulsion as dielectric. Appl. Surf. Sci. 257(14), 5989–5997 (2011)

    Article  Google Scholar 

  41. Kumar, J., Khamba, J.S.: Modeling the material removal rate in ultrasonic machining of titanium using dimensional analysis. Int. J. Adv. Manuf. Technol. 48(1–4), 103–119 (2010)

    Article  Google Scholar 

  42. Ghoreishi, M., Atkinson, J.: A comparative experimental study of machining characteristics in vibratory, rotary and vibro-rotary electro-discharge machining. J. Mater. Process. Technol. 120(1–3), 374–384 (2002)

    Article  Google Scholar 

  43. Abdullah, A., Shabgard, M.R.: Effect of ultrasonic vibration of tool on electrical discharge machining of cemented-tungsten carbide (WC-Co). Int. J. Adv. Manuf. Technol. 38, 1137–1147 (2008)

    Article  Google Scholar 

  44. Kibria, G., Sarkar, B.R., Pradhan, B.B., Bhattacharyya, B.: Comparative study of different dielectrics for micro-EDM performance during microhole machining of Ti-6Al-4V alloy. Int. J. Adv. Manuf. Technol. 48(5–8), 557–570 (2010)

    Article  Google Scholar 

  45. Teimouri, R., Baseri, H.: Experimental study of rotary magnetic field-assisted dry EDM with ultrasonic vibration of workpiece. Int. J. Adv. Manuf. Technol. 67(5–8), 1371–1384 (2013)

    Article  Google Scholar 

  46. Chattopadhyay, K.D., Satangi, P.S., Verma, S., Sherma, P.C.: Analysis of rotary electrical discharge machining characteristics in reversal magnetic field for copper-en8 steel system. Int. J. Adv. Manuf. Technol. 38, 925–937 (2008)

    Article  Google Scholar 

  47. Lin, J.L., Lin, C.L.: The use of the orthogonal array with grey relational analysis to optimize the electrical discharge machining process with multiple performance characteristics. Int. J. Mach. Tools Manuf. 42(2), 237–244 (2002)

    Article  Google Scholar 

  48. Tzeng, C.J., Lin, Y.H., Yang, Y.K., Jeng, M.C.: Optimization of turning operations with multiple performance characteristics using the Taguchi method and grey relational analysis. J. Mater. Process. Technol. 209(6), 2753–2759 (2009)

    Article  Google Scholar 

  49. Sivapirakasam, S.P., Mathew, J., Surianarayanan, M.: Multi attribute decision making for green electrical discharge machining. Expert Syst. Appl. 38(7), 8370–8374 (2011)

    Article  Google Scholar 

  50. Tang, L., Du, Y.T.: Experimental study on green electrical discharge machining in tap water of Ti-6Al-4V and parameters optimization. Int. J. Adv. Manuf. Technol. 70, 469–475 (2014)

    Article  Google Scholar 

  51. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  52. Bortolan, G., Degami, R.: A review of some methods for ranking fuzzy subset. Fuzzy Set Syst. 15(1), 1–19 (1985)

    Article  MATH  Google Scholar 

  53. Tong, L.I., Su, C.T.: Optimizing multi-response problems in the Taguchi method by fuzzy multiple attribute decision making. Int. Qual. Reliab. Eng. 13, 25–34 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagadish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Jagadish, Ray, A. (2015). A Fuzzy Multi-criteria Decision-making Model for Green Electrical Discharge Machining. In: Das, K., Deep, K., Pant, M., Bansal, J., Nagar, A. (eds) Proceedings of Fourth International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 335. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2217-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2217-0_4

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2216-3

  • Online ISBN: 978-81-322-2217-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics