Abstract
The Fuzzy c-means is one of the most popular ongoing area of research among all types of researchers including Computer science, Mathematics and other areas of engineering, as well as all areas of optimization practices. Several problems from various areas have been effectively solved by using FCM and its different variants. But, for efficient use of the algorithm in various diversified applications, some modifications or hybridization with other algorithms are needed. A comprehensive survey on FCM and its applications in more than one decade has been carried out in this paper to show the efficiency and applicability in a mixture of domains. Also, another intention of this survey is to encourage new researchers to make use of this simple algorithm (which is popularly called soft classification model) in problem solving.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Webb, A.: Statistical Pattern Recognition. Wiley, New Jersey (2002)
Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley, Boston (2005)
Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2004)
Dunn, J.C.: A fuzzy relative ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3(3), 32–57 (1974)
Bezdek, J.C.: Fuzzy mathematics in pattern classification, Ph.D. Dissertation. Applied Mathematics, Cornell University. Ithaca. New York (1973)
Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965). doi:10.1016/S0019-9958(65)90241-X. ISSN 0019-9958
Bellman, R.E., Kalaba, R.A., Zadeh, L.A.: Abstraction and pattern classification. J. Math. Anal. Appl. 13, 1–7 (1966)
Ruspini, E.H.: A new approach to clustering. Inf. Control 15(1), 22–32 (1969)
Guoyao, F.: Optimization methods for fuzzy clustering. Fuzzy Sets Syst. 93, 301–309 (1998)
Ravi, V., Zimmermann, H.J.: Fuzzy rule based classification with feature selector and modified threshold accepting. Eur. J. Oper. Res. 123, 16–28 (2000)
Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)
Ferreiraa, M.R.P., Carvalho, F.A.T.: Kernel fuzzy c-means with automatic variable weighting. Fuzzy Sets Syst. 237, 1–46 (2014)
Höppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis. Wiley (1999)
Lazaro, J., Arias, J., Martın, J.L., Cuadrado, C., Astarloa, A.: Implementation of a modified Fuzzy C-Means clustering algorithm for real-time applications. Microprocess. Microsyst. 29, 375–380 (2005)
Icer, S.: Automatic segmentation of corpus collasum using Gaussian mixture modeling and Fuzzy C means methods. Comput. Methods Programs Biomed. 112, 38–46 (2013)
Asyali, M.H., Colak, D., Demirkaya, O., Inan, M.S.: Gene expression profile classification: a review. Curr. Bioinform. 1, 55–73 (2006)
Runkler, T.A., Katz, C.: Fuzzy clustering by particle swarm optimization. In: Proceedings of 2006 IEEE International Conference on Fuzzy Systems, pp. 601–608. Canada (2006)
Huang, M., Xia, Z., Wang, H., Zeng, Q., Wang, Q.: The range of the value for the fuzzifier of the fuzzy c-means algorithm. Pattern Recogn. Lett. 33, 2280–2284 (2012)
Cannon, R.L., et al.: Efficient implementation of the fuzzy c-means clustering algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 8(2), 248–255 (1986)
Xie, W.X., Liu, J.Z.: A combine hard clustering algorithm and fuzzy clustering algorithm—fuzzy c-means clustering algorithm with two layers. Fuzzy Syst. Math. 2(6), 77–85 (1991)
Kamel, M.S., Selim, S.Z.: New algorithms for solving the fuzzy clustering problem. Pattern Recogn. 27(3), 421–428 (1994)
Park, D.C., Dagher, I.: Gradient based fuzzy c-means (GBFCM) algorithm. Proc. IEEE Internat. Conf. Neural Networks 3, 1626–1631 (1994)
Pei, J.H., Fan, J.L., Xie, W.X.: A new efficient fuzzy clustering method: cutset of fuzzy c-means algorithm. Acta Electronica Sinica 26(2), 83–86 (1998). (in Chinese)
Wei, L.M., Xie, W.X.: Rival checked fuzzy c-means algorithm. Acta Electronica Sinica 28(7), 63–66 (2000). (in Chinese)
Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T.: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 21, 193–199 (2002)
Fan, J.L., Zhen, W.Z., Xie, W.X.: Suppressed fuzzy c-means clustering algorithm. Pattern Recogn. Lett. 24, 1607–1612 (2003)
Chen, S.C., Zhang, D.Q.: Robust image segmentation using FCM with spatial constrains based on new kernel-induced distance measure. IEEE Trans. Syst. Man Cybern. Part B 34, 1907–1916 (2004)
Dong, Y., Zhuang, Y., Chen, K., Tai, X.: A hierarchical clustering algorithm based on fuzzy graph connectedness. Fuzzy Sets Syst. 157, 1760–1774 (2006)
Hung, W.L., Yang, M.S., Chen, D.H.: Parameter selection for suppressed fuzzy c-means with an application to MRI segmentation. Pattern Recogn. Lett. 27, 424–438 (2006)
Chuang, K.S., Tzeng, H.L., Chen, S., Wu, J., Chen, T.J.: Fuzzy c-means clustering with spatial information for image segmentation. Comput. Med. Imaging Graph. 30, 9–15 (2006)
Yang, M.S., Tsai, H.S.: A Gaussian kernel-based fuzzy c-means algorithm with a spatial biascorrection. Pattern Recogn. Lett. 29, 1713–1725 (2008)
Mitra, S., Pedrycz, W., Barman, B.: Shadowed c-means: integrating fuzzy and rough clustering. Pattern Recogn. 43, 1282–1291 (2010)
Xu, Z.S.: Intuitionistic fuzzy hierarchical clustering algorithms. J. Syst. Eng. Electron. 20(1), 90–97 (2009)
Kuhne, M., Togneri, R., Nordholm, S.: A novel fuzzy clustering algorithm using observation weighting and context information for reverberant blind speech separation. Signal Process. 90, 653–669 (2010)
Xue, Z., Shang, Y., Feng, A.: Semi-supervised outlier detection based on fuzzy rough C-means clustering. Math. Comput. Simul. 80, 1911–1921 (2010)
Geweniger, T., Zulke, D., Hammer, B., Villmann, T.: Median fuzzy c-means for clustering dissimilarity data. Neurocomputing 73, 1109–1116 (2010)
Dovžan, D., Škrjanc, I.: Recursive fuzzy c-means clustering for recursive fuzzy identification of time-varying processes. ISA Trans. 50, 159–169 (2011)
Ji, Z.X., Sun, Q.S., Xia, D.S.: A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image. Comput. Med. Imaging Graph. 35, 383–397 (2011)
Horta, D., Andrade, I.C., Campello, R.J.G.B.: Evolutionary fuzzy clustering of relational data. Theoret. Comput. Sci. 412, 5854–5870 (2011)
Li, X., Wong, H.S., Wu, S.: A fuzzy minimax clustering model and its applications. Inf. Sci. 186, 114–125 (2012)
Maraziotis, I.A.: A semi-supervised fuzzy clustering algorithm applied to gene expression data. Pattern Recogn. 45, 637–648 (2012)
Kannan, S.R., Ramathilagam, S., Devi, R., Hines, E.: Strong fuzzy c-means in medical image data analysis. J. Syst. Softw. 85, 2425–2438 (2012)
Ji, Z., Sun, Q., Xia, Y., Chen, Q., Xia, D., Feng, D.: Generalized rough fuzzy c-means algorithm for brain MR image segmentation. Comput. Methods Programs Biomed. 108, 644–655 (2012)
Xu, C., Zhang, P., Li, B., Wu, D., Fan, H.: Vague C-means clustering algorithm. Pattern Recogn. Lett. 34, 505–510 (2013)
Fritz, H., Escudero, L.A.G., Iscar, M.: Robust constrained fuzzy clustering. Inf. Sci. 245, 38–52 (2013)
Mei, J.P., Chen, L.: Link FCM: relation integrated fuzzy c-means. Pattern Recogn. 46, 272–283 (2013)
Lai, J.Z.C., Juan, E.Y.T., Lai, F.Z.C.: Rough clustering using generalized fuzzy clustering algorithm. Pattern Recogn. 46, 2538–2547 (2013)
Qiu, C., Xiao, J., Yu, L., Han, L., Iqbal, M.N.: A modified interval type-2 fuzzy C-means algorithm with application in MR image segmentation. Pattern Recogn. Lett. 34, 1329–1338 (2013)
Sancheza, M.A., Castillo, O., Castro, J.R., Melin, P.: Fuzzy granular gravitational clustering algorithm for multivariate data. Inf. Sci. 279, 498–511 (2014)
Lin, P.L., Huang, P.W., Kuo, C.H., Lai, Y.H.: A size-insensitive integrity-based fuzzy c-means method for data clustering. Pattern Recogn. 47, 2042–2056 (2014)
Shamshirband, S., Amini, A., Anuar, N.B., Kiah, L.M., The, Y.W., Furnell, S.: D-FICCA: a density-based fuzzy imperialist competitive clustering algorithm for intrusion detection in wireless sensor networks. Measurement 55, 212–226 (2014)
Özbay, Y., Ceylan, R., Karlik, B.: A fuzzy clustering neural network architecture for classification of ECG arrhythmias. Comput. Biol. Med. 36, 376–388 (2006)
Mingoti, S.A., Lima, J.O.: Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms. Eur. J. Oper. Res. 174, 1742–1759 (2006)
Staiano, A., Tagliaferri, R., Pedrycz, W.: Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering. Neurocomputing 69, 1570–1581 (2006)
Mukhopadhyay, A., Maulik, U.: Towards improving fuzzy clustering using support vector machine: application to gene expression data. Pattern Recogn. 42, 2744–2763 (2009)
Aydilek, I.B., Arslan, A.: A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm. Inf. Sci. 233, 25–35 (2013)
Tsekouras, G.E., Tsimikas, J.: On training RBF neural networks using input–output fuzzy clustering and particle swarm optimization. Fuzzy Sets Syst. 221, 65–89 (2013)
Sua, M.S., Chia, C.C., Chen, C., Chen, J.F.: Classification of partial discharge events in GILBS using probabilistic neural networks and the fuzzy c-means clustering approach. Electr. Power Energy Syst. 61, 173–179 (2014)
Hassen, D.B., Taleb, H., Yaacoub, I.B., Mnif, N.: Classification of chest lesions with using fuzzy c-means algorithm and support vector machines. Adv. Intell. Syst. Comput. 239, 319–328 (2014). doi:10.1007/978-3-319-01854-6_33
Li, K., Li, P.: Fuzzy clustering with generalized entropy based on neural network. Lect. Notes Electr. Eng. 238, 2085–2091 (2014). doi:10.1007/978-1-4614-4981-2_228
Fan, J., Li, J.: A fixed suppressed rate selection method for suppressed fuzzy c-means clustering algorithm. Appl. Math. 5, 1275–1283 (2014). doi:10.4236/am.2014.58119
Bharill, N., Tiwari, A.: Handling big data with fuzzy based classification approach. Adv. Trends Soft Comput. Stud. Fuzziness Soft Comput. 312, 219–227 (2014). doi:10.1007/978-3-319-03674-8_21
Karthikeyani, N., Visalakshi, S., Parvathavarthini, S., Thangavel, K.: An intuitionistic fuzzy approach to fuzzy clustering of numerical dataset. Adv. Intell. Syst. Comput. 246: 79–87 (2014). doi:10.1007/978-81-322-1680-3_9
Looney, C.G.: Interactive clustering and merging with a new fuzzy expected value. Pattern Recogn. 35, 2413–2423 (2002)
Miyamoto, S.: Information clustering based on fuzzy multisets. Inf. Process. Manage. 39, 195–213 (2003)
Kim, W.D., Lee, K.H., Lee, D.: A novel initialization scheme for the fuzzy c-means algorithm for color clustering. Pattern Recogn. Lett. 25, 227–237 (2004)
Nayak, J., Nanda, M., Nayak, K., Naik, B., Behera, H.S.: An improved firefly fuzzy c-means (FAFCM) algorithm for clustering real world data sets. Smart Innov. Syst. Technol. 27, 339–348 (2014). doi:10.1007/978-3-319-07353-8_40
Kong, X., Wang, R., Li, G.: Fuzzy clustering algorithms based on resolution and their application in image compression. Pattern Recogn. 35, 2439–2444 (2002)
Noordam, J.C., van den Broek, W.H.A.M., Buydens, L.M.C.: Multivariate image segmentation with cluster size insensitive fuzzy C-means. Chemometr. Intell. Lab. Syst. 64, 65–78 (2002)
Cai, W., Chen, S., Zhang, D.: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn. 40, 825–838 (2007)
Halberstadt, W., Douglas, T.S.: Fuzzy clustering to detect tuberculosis meningitis-associated hyper density in CT images. Comput. Biol. Med. 38, 165–170 (2008)
Kannan, S.R., Ramathilagam, S., Sathya, A., Pandiyarajan, R.: Effective fuzzy c-means based kernel function in segmenting medical images. Comput. Biol. Med. 40, 572–579 (2010)
Zhao, F., Jiao, L., Liu, H., Gao, X.: A novel fuzzy clustering algorithm with non local adaptive spatial constraint for image segmentation. Signal Process. 91, 988–999 (2011)
He, Y., Hussaini, M.Y., Ma, J., Shafei, B., Steidl, G.: A new fuzzy c-means method with total variation regularization for segmentation of images with noisy and incomplete data. Pattern Recogn. 45, 3463–3471 (2012)
Ji, Z., Liu, J., Cao, G., Sun, Q., Chen, Q.: Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation. Pattern Recogn. 47, 2454–2466 (2014)
Jun, X., Yifan, T.: Research of brain MRI image segmentation algorithm based on FCM and SVM. In: The 26th IEEE Chinese Control and Decision Conference (2014 CCDC), pp. 1712–1716. doi:10.1109/CCDC.2014.6852445
Balafar, M.A.: Fuzzy C-mean based brain MRI segmentation algorithms. Artif. Intell. Rev. 41(3), 441–449 (2014). doi:10.1007/s10462-012-9318-2
Laishram, R., Kumar, W.K., Gupta, A., Prakash, K.V.: A novel MRI brain edge detection using PSOFCM segmentation and Canny Algorithm. In: IEEE International Conference on Electronic Systems, Signal Processing and Computing Technologies (ICESC) (2014), pp. 398–401. doi:10.1109/ICESC.2014.78
Noordam, J. C., van den Broek, W.H.A.M., Buydens, L.M.C.: Geometrically guided fuzzy c-means clustering for multivariate image segmentation. In: Proceedings on 15th International Conference on Pattern Recognition, 2000, vol. 1. IEEE (2000)
Liu, Q., Zhou, L., Sun, X.Y.: A fast fuzzy c-means algorithm for colour image segmentation. Int. J. Inf. Commun. Technol. 5(3/4), 263–271 (2013)
Xiao, K., Ho, S. H., Bargiela, A: Automatic brain MRI segmentation scheme based on feature weighting factors selection on fuzzy c-means clustering algorithms with Gaussian smoothing. Int. J. Comput. Intell. Bioinform. Syst. Biol. 1(3):316–331 (2010)
Zeng, Z., Han, C., Wang, L., Zwiggelaar, R.: Unsupervised brain tissue segmentation by using bias correction fuzzy c-means and class-adaptive hidden markov random field modelling. Lect. Notes Electr. Eng. 269, 579–587 (2014). doi:10.1007/978-94-007-7618-0_56
Lai, D.T.C., Garibaldi, J.M.: A preliminary study on automatic breast cancer data classification using semi-supervised fuzzy c-means. Int. J. Biomed. Eng. Technol. 13(4), 303–322 (2013)
Hassan, M., Chaudhry, A., Khan, A., Kim, J.Y.: Carotid artery image segmentation using modified spatial fuzzy c-means and ensemble clustering. Comput. Methods Programs Biomed. 108(20–12), 1261–1276
Hassana, M., Chaudhry, A., Khan, A., Iftikhar, M.A.: Robust information gain based fuzzy c-means clustering and classification of carotid artery ultrasound images. Comput. Methods Programs Biomed. 113, 593–609 (2014)
Vargas, D.M., Funes, F.J.G., Silva, A.J.R.: A fuzzy clustering algorithm with spatial robust estimation constraint for noisy color image segmentation. Pattern Recogn. Lett. 34, 400–413 (2013)
Zhu, C.J., Yang, S., Zhao, Q., Cui, S., Wen, N.: Robust semi-supervised Kernel-FCM algorithm incorporating local spatial information for remote sensing image classification. J. Indian Soc. Remote Sens. 42(1), 35–49 (2014)
Yu, X.C., He, H., Hu, D., Zhou, W.: Land cover classification of remote sensing imagery based on interval-valued data fuzzy c-means algorithm. Sci. China Earth Sci. 57(6), 1306–1313 (2014). doi:10.1007/s11430-013-4689
He, P., Shi, W., Zhang, H., Hao, M.: A novel dynamic threshold method for unsupervised change detection from remotely sensed images. Remote Sens. Lett. 5(4), 396–403 (2014). (Taylor & Francis)
Belacel, N., Hansen, P., Mladenovic, N.: Fuzzy J-Means: a new heuristic for fuzzy clustering. Pattern Recogn. 35, 2193–2200 (2002)
Wu, K.L., Yang, M.S.: Alternative c-means clustering algorithms. Pattern Recogn. 35, 2267–2278 (2002)
Pedrycz, W., Vukovich, G.: Fuzzy clustering with supervision. Pattern Recogn. 37, 1339–1349 (2004)
Pedrycz, W.: Fuzzy clustering with a knowledge-based guidance. Pattern Recogn. Lett. 25, 469–480 (2004)
Wang, X., Wang, Y., Wang, L.: Improving fuzzy c-means clustering based on feature-weight learning. Pattern Recogn. Lett. 25, 1123–1132 (2004)
Pianykh, O.S.: Analytically tractable case of fuzzy c-means clustering. Pattern Recogn. 39, 35–46 (2006)
Park, D.-C.: Intuitive fuzzy C-means algorithm for MRI segmentation. In: 2010 International Conference on Information Science and Applications (ICISA), pp. 1–7. doi:10.1109/ICISA.2010.5480541
Yang, M.S., Tsai, H.S.: A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction. Pattern Recogn. Lett. 29, 1713–1725 (2008)
Kim, W.D., Lee, K.H., Lee, D.: A novel initialization scheme for the fuzzy c-means algorithm for color clustering. Pattern Recogn. Lett. 25, 227–237 (2004)
ŁeRski, J.M., Owczarek, A.J.: A time-domain-constrained fuzzy clustering method and its application to signal analysis. Fuzzy Sets Syst. 155, 165–190 (2005)
Ozer, M.: Fuzzy c-means clustering and Internet portals: a case study. Eur. J. Oper. Res. 164, 696–714 (2005)
Inan, Z.H., Kuntalp, M.: A study on fuzzy C-means clustering-based systems in automatic spike detection. Comput. Biol. Med. 37, 1160–1166 (2007)
Ceccarelli, M., Maratea, A.: Improving fuzzy clustering of biological data by metric learning with side information. Int. J. Approximate Reasoning 47, 45–57 (2008)
Silva, S., Junior, M.D., Junior, V.L., Brennan, M.J.: Structural damage detection by fuzzy clustering. Mech. Syst. Signal Process. 22, 1636–1649 (2008)
Chen, S.M., Chang, Y.C.: Multi-variable fuzzy forecasting based on fuzzy clustering and fuzzy rule interpolation techniques. Inf. Sci. 180, 4772–4783 (2010)
Iliadis, L.S., Vangeloudh, M., Spartalis, S.: An intelligent system employing an enhanced fuzzy c-means clustering model: application in the case of forest fires. Comput. Electron. Agric. 70, 276–284 (2010)
Sudha, K.R., Raju, Y.B., Sekhar, A.C.: Fuzzy C-Means clustering for robust decentralized load frequency control of interconnected power system with generation rate constraint. Electr. Power Energy Syst. 37, 58–66 (2012)
Yin, X.F., Khoo, L.P., Chong, Y.T.: A fuzzy c-means based hybrid evolutionary approach to the clustering of supply chain. Comput. Ind. Eng. 66, 768–780 (2013)
Yan, Y., Chen, L., Tjhi, W.C.: Fuzzy semi-supervised co-clustering for text documents. Fuzzy Sets Syst. 215, 74–89 (2013)
Azara, A.T., El-Said, S.A., Hassaniend, A.E.: Fuzzy and hard clustering analysis for thyroid disease. Comput. Methods Programs Biomed. 11(1), 1–16 (2013)
Liu, L.F., Sun, Z.D., Zhou, X.Y., Han, J.F., Jing, B.,Pan, Y.Y., Zhao, H.T., Neng, Y.: A new algorithm of modified fuzzy c means clustering (FCM) and the prediction of carbonate fluid. In: 76th EAGE Conference and Exhibition (2014). doi:10.3997/2214-4609.20140801
Hathaway, R.J., Bezdek, J.C., Hu, Y.K.: Generalized fuzzy c-means clustering strategies using Lp norm distances. IEEE Trans. Fuzzy Syst. 8(5), 576–582
Wang, H.K., Hwang, J.C., Chang, P.L., Hsieh, F.H.: Function approximation using robust fuzzy-Grey CMAC method. Int. J. Model. Ident. Control 14(4), 227–234
Yang, M.S.: On asymptotic normality of a class of fuzzy c-means clustering procedures. Int. J. Gen. Syst. 22(4) (2007)
Yang, M.S., Yu, K.F.: On stochastic convergence theorems for the fuzzy c-means clustering procedure. Int. J. Gen. Syst. 16(4), 397–411 (2007)
Kaushik, A., Soni, A.K., Soni, R.: Radial basis function network using intuitionist fuzzy C means for software cost estimation. Int. J. Comput. Appl. Technol. 47(1), 86–95 (2013)
Juang, C.F., Hsieh, C.D.: Fuzzy C-means based support vector machine for channel equalization. Int. J. Gen. Syst. 38(3) (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer India
About this paper
Cite this paper
Nayak, J., Naik, B., Behera, H.S. (2015). Fuzzy C-Means (FCM) Clustering Algorithm: A Decade Review from 2000 to 2014. In: Jain, L., Behera, H., Mandal, J., Mohapatra, D. (eds) Computational Intelligence in Data Mining - Volume 2. Smart Innovation, Systems and Technologies, vol 32. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2208-8_14
Download citation
DOI: https://doi.org/10.1007/978-81-322-2208-8_14
Published:
Publisher Name: Springer, New Delhi
Print ISBN: 978-81-322-2207-1
Online ISBN: 978-81-322-2208-8
eBook Packages: EngineeringEngineering (R0)