Fuzzy C-Means (FCM) Clustering Algorithm: A Decade Review from 2000 to 2014 | SpringerLink
Skip to main content

Fuzzy C-Means (FCM) Clustering Algorithm: A Decade Review from 2000 to 2014

  • Conference paper
  • First Online:
Computational Intelligence in Data Mining - Volume 2

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 32))

Abstract

The Fuzzy c-means is one of the most popular ongoing area of research among all types of researchers including Computer science, Mathematics and other areas of engineering, as well as all areas of optimization practices. Several problems from various areas have been effectively solved by using FCM and its different variants. But, for efficient use of the algorithm in various diversified applications, some modifications or hybridization with other algorithms are needed. A comprehensive survey on FCM and its applications in more than one decade has been carried out in this paper to show the efficiency and applicability in a mixture of domains. Also, another intention of this survey is to encourage new researchers to make use of this simple algorithm (which is popularly called soft classification model) in problem solving.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 22879
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 28599
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 28599
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Webb, A.: Statistical Pattern Recognition. Wiley, New Jersey (2002)

    Book  MATH  Google Scholar 

  2. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley, Boston (2005)

    Google Scholar 

  3. Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2004)

    Google Scholar 

  4. Dunn, J.C.: A fuzzy relative ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3(3), 32–57 (1974)

    Article  MathSciNet  Google Scholar 

  5. Bezdek, J.C.: Fuzzy mathematics in pattern classification, Ph.D. Dissertation. Applied Mathematics, Cornell University. Ithaca. New York (1973)

    Google Scholar 

  6. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965). doi:10.1016/S0019-9958(65)90241-X. ISSN 0019-9958

  7. Bellman, R.E., Kalaba, R.A., Zadeh, L.A.: Abstraction and pattern classification. J. Math. Anal. Appl. 13, 1–7 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ruspini, E.H.: A new approach to clustering. Inf. Control 15(1), 22–32 (1969)

    Article  MATH  Google Scholar 

  9. Guoyao, F.: Optimization methods for fuzzy clustering. Fuzzy Sets Syst. 93, 301–309 (1998)

    Article  MATH  Google Scholar 

  10. Ravi, V., Zimmermann, H.J.: Fuzzy rule based classification with feature selector and modified threshold accepting. Eur. J. Oper. Res. 123, 16–28 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    Book  MATH  Google Scholar 

  12. Ferreiraa, M.R.P., Carvalho, F.A.T.: Kernel fuzzy c-means with automatic variable weighting. Fuzzy Sets Syst. 237, 1–46 (2014)

    Article  Google Scholar 

  13. Höppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis. Wiley (1999)

    Google Scholar 

  14. Lazaro, J., Arias, J., Martın, J.L., Cuadrado, C., Astarloa, A.: Implementation of a modified Fuzzy C-Means clustering algorithm for real-time applications. Microprocess. Microsyst. 29, 375–380 (2005)

    Article  Google Scholar 

  15. Icer, S.: Automatic segmentation of corpus collasum using Gaussian mixture modeling and Fuzzy C means methods. Comput. Methods Programs Biomed. 112, 38–46 (2013)

    Article  Google Scholar 

  16. Asyali, M.H., Colak, D., Demirkaya, O., Inan, M.S.: Gene expression profile classification: a review. Curr. Bioinform. 1, 55–73 (2006)

    Article  Google Scholar 

  17. Runkler, T.A., Katz, C.: Fuzzy clustering by particle swarm optimization. In: Proceedings of 2006 IEEE International Conference on Fuzzy Systems, pp. 601–608. Canada (2006)

    Google Scholar 

  18. Huang, M., Xia, Z., Wang, H., Zeng, Q., Wang, Q.: The range of the value for the fuzzifier of the fuzzy c-means algorithm. Pattern Recogn. Lett. 33, 2280–2284 (2012)

    Article  Google Scholar 

  19. Cannon, R.L., et al.: Efficient implementation of the fuzzy c-means clustering algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 8(2), 248–255 (1986)

    Article  MATH  Google Scholar 

  20. Xie, W.X., Liu, J.Z.: A combine hard clustering algorithm and fuzzy clustering algorithm—fuzzy c-means clustering algorithm with two layers. Fuzzy Syst. Math. 2(6), 77–85 (1991)

    Google Scholar 

  21. Kamel, M.S., Selim, S.Z.: New algorithms for solving the fuzzy clustering problem. Pattern Recogn. 27(3), 421–428 (1994)

    Article  Google Scholar 

  22. Park, D.C., Dagher, I.: Gradient based fuzzy c-means (GBFCM) algorithm. Proc. IEEE Internat. Conf. Neural Networks 3, 1626–1631 (1994)

    Google Scholar 

  23. Pei, J.H., Fan, J.L., Xie, W.X.: A new efficient fuzzy clustering method: cutset of fuzzy c-means algorithm. Acta Electronica Sinica 26(2), 83–86 (1998). (in Chinese)

    Google Scholar 

  24. Wei, L.M., Xie, W.X.: Rival checked fuzzy c-means algorithm. Acta Electronica Sinica 28(7), 63–66 (2000). (in Chinese)

    Google Scholar 

  25. Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T.: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 21, 193–199 (2002)

    Article  Google Scholar 

  26. Fan, J.L., Zhen, W.Z., Xie, W.X.: Suppressed fuzzy c-means clustering algorithm. Pattern Recogn. Lett. 24, 1607–1612 (2003)

    Article  MATH  Google Scholar 

  27. Chen, S.C., Zhang, D.Q.: Robust image segmentation using FCM with spatial constrains based on new kernel-induced distance measure. IEEE Trans. Syst. Man Cybern. Part B 34, 1907–1916 (2004)

    Article  Google Scholar 

  28. Dong, Y., Zhuang, Y., Chen, K., Tai, X.: A hierarchical clustering algorithm based on fuzzy graph connectedness. Fuzzy Sets Syst. 157, 1760–1774 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hung, W.L., Yang, M.S., Chen, D.H.: Parameter selection for suppressed fuzzy c-means with an application to MRI segmentation. Pattern Recogn. Lett. 27, 424–438 (2006)

    Article  Google Scholar 

  30. Chuang, K.S., Tzeng, H.L., Chen, S., Wu, J., Chen, T.J.: Fuzzy c-means clustering with spatial information for image segmentation. Comput. Med. Imaging Graph. 30, 9–15 (2006)

    Article  Google Scholar 

  31. Yang, M.S., Tsai, H.S.: A Gaussian kernel-based fuzzy c-means algorithm with a spatial biascorrection. Pattern Recogn. Lett. 29, 1713–1725 (2008)

    Article  Google Scholar 

  32. Mitra, S., Pedrycz, W., Barman, B.: Shadowed c-means: integrating fuzzy and rough clustering. Pattern Recogn. 43, 1282–1291 (2010)

    Article  MATH  Google Scholar 

  33. Xu, Z.S.: Intuitionistic fuzzy hierarchical clustering algorithms. J. Syst. Eng. Electron. 20(1), 90–97 (2009)

    Google Scholar 

  34. Kuhne, M., Togneri, R., Nordholm, S.: A novel fuzzy clustering algorithm using observation weighting and context information for reverberant blind speech separation. Signal Process. 90, 653–669 (2010)

    Article  Google Scholar 

  35. Xue, Z., Shang, Y., Feng, A.: Semi-supervised outlier detection based on fuzzy rough C-means clustering. Math. Comput. Simul. 80, 1911–1921 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Geweniger, T., Zulke, D., Hammer, B., Villmann, T.: Median fuzzy c-means for clustering dissimilarity data. Neurocomputing 73, 1109–1116 (2010)

    Article  Google Scholar 

  37. Dovžan, D., Škrjanc, I.: Recursive fuzzy c-means clustering for recursive fuzzy identification of time-varying processes. ISA Trans. 50, 159–169 (2011)

    Article  Google Scholar 

  38. Ji, Z.X., Sun, Q.S., Xia, D.S.: A modified possibilistic fuzzy c-means clustering algorithm for bias field estimation and segmentation of brain MR image. Comput. Med. Imaging Graph. 35, 383–397 (2011)

    Article  Google Scholar 

  39. Horta, D., Andrade, I.C., Campello, R.J.G.B.: Evolutionary fuzzy clustering of relational data. Theoret. Comput. Sci. 412, 5854–5870 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, X., Wong, H.S., Wu, S.: A fuzzy minimax clustering model and its applications. Inf. Sci. 186, 114–125 (2012)

    Article  Google Scholar 

  41. Maraziotis, I.A.: A semi-supervised fuzzy clustering algorithm applied to gene expression data. Pattern Recogn. 45, 637–648 (2012)

    Article  MATH  Google Scholar 

  42. Kannan, S.R., Ramathilagam, S., Devi, R., Hines, E.: Strong fuzzy c-means in medical image data analysis. J. Syst. Softw. 85, 2425–2438 (2012)

    Article  Google Scholar 

  43. Ji, Z., Sun, Q., Xia, Y., Chen, Q., Xia, D., Feng, D.: Generalized rough fuzzy c-means algorithm for brain MR image segmentation. Comput. Methods Programs Biomed. 108, 644–655 (2012)

    Article  Google Scholar 

  44. Xu, C., Zhang, P., Li, B., Wu, D., Fan, H.: Vague C-means clustering algorithm. Pattern Recogn. Lett. 34, 505–510 (2013)

    Article  Google Scholar 

  45. Fritz, H., Escudero, L.A.G., Iscar, M.: Robust constrained fuzzy clustering. Inf. Sci. 245, 38–52 (2013)

    Article  Google Scholar 

  46. Mei, J.P., Chen, L.: Link FCM: relation integrated fuzzy c-means. Pattern Recogn. 46, 272–283 (2013)

    Article  MATH  Google Scholar 

  47. Lai, J.Z.C., Juan, E.Y.T., Lai, F.Z.C.: Rough clustering using generalized fuzzy clustering algorithm. Pattern Recogn. 46, 2538–2547 (2013)

    Article  Google Scholar 

  48. Qiu, C., Xiao, J., Yu, L., Han, L., Iqbal, M.N.: A modified interval type-2 fuzzy C-means algorithm with application in MR image segmentation. Pattern Recogn. Lett. 34, 1329–1338 (2013)

    Article  Google Scholar 

  49. Sancheza, M.A., Castillo, O., Castro, J.R., Melin, P.: Fuzzy granular gravitational clustering algorithm for multivariate data. Inf. Sci. 279, 498–511 (2014)

    Article  Google Scholar 

  50. Lin, P.L., Huang, P.W., Kuo, C.H., Lai, Y.H.: A size-insensitive integrity-based fuzzy c-means method for data clustering. Pattern Recogn. 47, 2042–2056 (2014)

    Article  Google Scholar 

  51. Shamshirband, S., Amini, A., Anuar, N.B., Kiah, L.M., The, Y.W., Furnell, S.: D-FICCA: a density-based fuzzy imperialist competitive clustering algorithm for intrusion detection in wireless sensor networks. Measurement 55, 212–226 (2014)

    Article  Google Scholar 

  52. Özbay, Y., Ceylan, R., Karlik, B.: A fuzzy clustering neural network architecture for classification of ECG arrhythmias. Comput. Biol. Med. 36, 376–388 (2006)

    Article  Google Scholar 

  53. Mingoti, S.A., Lima, J.O.: Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms. Eur. J. Oper. Res. 174, 1742–1759 (2006)

    Article  MATH  Google Scholar 

  54. Staiano, A., Tagliaferri, R., Pedrycz, W.: Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering. Neurocomputing 69, 1570–1581 (2006)

    Article  Google Scholar 

  55. Mukhopadhyay, A., Maulik, U.: Towards improving fuzzy clustering using support vector machine: application to gene expression data. Pattern Recogn. 42, 2744–2763 (2009)

    Article  MATH  Google Scholar 

  56. Aydilek, I.B., Arslan, A.: A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm. Inf. Sci. 233, 25–35 (2013)

    Article  Google Scholar 

  57. Tsekouras, G.E., Tsimikas, J.: On training RBF neural networks using input–output fuzzy clustering and particle swarm optimization. Fuzzy Sets Syst. 221, 65–89 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  58. Sua, M.S., Chia, C.C., Chen, C., Chen, J.F.: Classification of partial discharge events in GILBS using probabilistic neural networks and the fuzzy c-means clustering approach. Electr. Power Energy Syst. 61, 173–179 (2014)

    Article  Google Scholar 

  59. Hassen, D.B., Taleb, H., Yaacoub, I.B., Mnif, N.: Classification of chest lesions with using fuzzy c-means algorithm and support vector machines. Adv. Intell. Syst. Comput. 239, 319–328 (2014). doi:10.1007/978-3-319-01854-6_33

  60. Li, K., Li, P.: Fuzzy clustering with generalized entropy based on neural network. Lect. Notes Electr. Eng. 238, 2085–2091 (2014). doi:10.1007/978-1-4614-4981-2_228

    Article  Google Scholar 

  61. Fan, J., Li, J.: A fixed suppressed rate selection method for suppressed fuzzy c-means clustering algorithm. Appl. Math. 5, 1275–1283 (2014). doi:10.4236/am.2014.58119

    Article  Google Scholar 

  62. Bharill, N., Tiwari, A.: Handling big data with fuzzy based classification approach. Adv. Trends Soft Comput. Stud. Fuzziness Soft Comput. 312, 219–227 (2014). doi:10.1007/978-3-319-03674-8_21

    Article  Google Scholar 

  63. Karthikeyani, N., Visalakshi, S., Parvathavarthini, S., Thangavel, K.: An intuitionistic fuzzy approach to fuzzy clustering of numerical dataset. Adv. Intell. Syst. Comput. 246: 79–87 (2014). doi:10.1007/978-81-322-1680-3_9

  64. Looney, C.G.: Interactive clustering and merging with a new fuzzy expected value. Pattern Recogn. 35, 2413–2423 (2002)

    Article  MATH  Google Scholar 

  65. Miyamoto, S.: Information clustering based on fuzzy multisets. Inf. Process. Manage. 39, 195–213 (2003)

    Article  MATH  Google Scholar 

  66. Kim, W.D., Lee, K.H., Lee, D.: A novel initialization scheme for the fuzzy c-means algorithm for color clustering. Pattern Recogn. Lett. 25, 227–237 (2004)

    Article  Google Scholar 

  67. Nayak, J., Nanda, M., Nayak, K., Naik, B., Behera, H.S.: An improved firefly fuzzy c-means (FAFCM) algorithm for clustering real world data sets. Smart Innov. Syst. Technol. 27, 339–348 (2014). doi:10.1007/978-3-319-07353-8_40

    Article  Google Scholar 

  68. Kong, X., Wang, R., Li, G.: Fuzzy clustering algorithms based on resolution and their application in image compression. Pattern Recogn. 35, 2439–2444 (2002)

    Article  MATH  Google Scholar 

  69. Noordam, J.C., van den Broek, W.H.A.M., Buydens, L.M.C.: Multivariate image segmentation with cluster size insensitive fuzzy C-means. Chemometr. Intell. Lab. Syst. 64, 65–78 (2002)

    Google Scholar 

  70. Cai, W., Chen, S., Zhang, D.: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn. 40, 825–838 (2007)

    Article  MATH  Google Scholar 

  71. Halberstadt, W., Douglas, T.S.: Fuzzy clustering to detect tuberculosis meningitis-associated hyper density in CT images. Comput. Biol. Med. 38, 165–170 (2008)

    Article  Google Scholar 

  72. Kannan, S.R., Ramathilagam, S., Sathya, A., Pandiyarajan, R.: Effective fuzzy c-means based kernel function in segmenting medical images. Comput. Biol. Med. 40, 572–579 (2010)

    Article  Google Scholar 

  73. Zhao, F., Jiao, L., Liu, H., Gao, X.: A novel fuzzy clustering algorithm with non local adaptive spatial constraint for image segmentation. Signal Process. 91, 988–999 (2011)

    Article  MATH  Google Scholar 

  74. He, Y., Hussaini, M.Y., Ma, J., Shafei, B., Steidl, G.: A new fuzzy c-means method with total variation regularization for segmentation of images with noisy and incomplete data. Pattern Recogn. 45, 3463–3471 (2012)

    Article  MATH  Google Scholar 

  75. Ji, Z., Liu, J., Cao, G., Sun, Q., Chen, Q.: Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation. Pattern Recogn. 47, 2454–2466 (2014)

    Article  Google Scholar 

  76. Jun, X., Yifan, T.: Research of brain MRI image segmentation algorithm based on FCM and SVM. In: The 26th IEEE Chinese Control and Decision Conference (2014 CCDC), pp. 1712–1716. doi:10.1109/CCDC.2014.6852445

  77. Balafar, M.A.: Fuzzy C-mean based brain MRI segmentation algorithms. Artif. Intell. Rev. 41(3), 441–449 (2014). doi:10.1007/s10462-012-9318-2

    Article  Google Scholar 

  78. Laishram, R., Kumar, W.K., Gupta, A., Prakash, K.V.: A novel MRI brain edge detection using PSOFCM segmentation and Canny Algorithm. In: IEEE International Conference on Electronic Systems, Signal Processing and Computing Technologies (ICESC) (2014), pp. 398–401. doi:10.1109/ICESC.2014.78

  79. Noordam, J. C., van den Broek, W.H.A.M., Buydens, L.M.C.: Geometrically guided fuzzy c-means clustering for multivariate image segmentation. In: Proceedings on 15th International Conference on Pattern Recognition, 2000, vol. 1. IEEE (2000)

    Google Scholar 

  80. Liu, Q., Zhou, L., Sun, X.Y.: A fast fuzzy c-means algorithm for colour image segmentation. Int. J. Inf. Commun. Technol. 5(3/4), 263–271 (2013)

    Article  Google Scholar 

  81. Xiao, K., Ho, S. H., Bargiela, A: Automatic brain MRI segmentation scheme based on feature weighting factors selection on fuzzy c-means clustering algorithms with Gaussian smoothing. Int. J. Comput. Intell. Bioinform. Syst. Biol. 1(3):316–331 (2010)

    Google Scholar 

  82. Zeng, Z., Han, C., Wang, L., Zwiggelaar, R.: Unsupervised brain tissue segmentation by using bias correction fuzzy c-means and class-adaptive hidden markov random field modelling. Lect. Notes Electr. Eng. 269, 579–587 (2014). doi:10.1007/978-94-007-7618-0_56

    Article  Google Scholar 

  83. Lai, D.T.C., Garibaldi, J.M.: A preliminary study on automatic breast cancer data classification using semi-supervised fuzzy c-means. Int. J. Biomed. Eng. Technol. 13(4), 303–322 (2013)

    Article  Google Scholar 

  84. Hassan, M., Chaudhry, A., Khan, A., Kim, J.Y.: Carotid artery image segmentation using modified spatial fuzzy c-means and ensemble clustering. Comput. Methods Programs Biomed. 108(20–12), 1261–1276

    Google Scholar 

  85. Hassana, M., Chaudhry, A., Khan, A., Iftikhar, M.A.: Robust information gain based fuzzy c-means clustering and classification of carotid artery ultrasound images. Comput. Methods Programs Biomed. 113, 593–609 (2014)

    Article  Google Scholar 

  86. Vargas, D.M., Funes, F.J.G., Silva, A.J.R.: A fuzzy clustering algorithm with spatial robust estimation constraint for noisy color image segmentation. Pattern Recogn. Lett. 34, 400–413 (2013)

    Article  Google Scholar 

  87. Zhu, C.J., Yang, S., Zhao, Q., Cui, S., Wen, N.: Robust semi-supervised Kernel-FCM algorithm incorporating local spatial information for remote sensing image classification. J. Indian Soc. Remote Sens. 42(1), 35–49 (2014)

    Article  Google Scholar 

  88. Yu, X.C., He, H., Hu, D., Zhou, W.: Land cover classification of remote sensing imagery based on interval-valued data fuzzy c-means algorithm. Sci. China Earth Sci. 57(6), 1306–1313 (2014). doi:10.1007/s11430-013-4689

    Article  Google Scholar 

  89. He, P., Shi, W., Zhang, H., Hao, M.: A novel dynamic threshold method for unsupervised change detection from remotely sensed images. Remote Sens. Lett. 5(4), 396–403 (2014). (Taylor & Francis)

    Article  Google Scholar 

  90. Belacel, N., Hansen, P., Mladenovic, N.: Fuzzy J-Means: a new heuristic for fuzzy clustering. Pattern Recogn. 35, 2193–2200 (2002)

    Article  MATH  Google Scholar 

  91. Wu, K.L., Yang, M.S.: Alternative c-means clustering algorithms. Pattern Recogn. 35, 2267–2278 (2002)

    Article  MATH  Google Scholar 

  92. Pedrycz, W., Vukovich, G.: Fuzzy clustering with supervision. Pattern Recogn. 37, 1339–1349 (2004)

    Article  MATH  Google Scholar 

  93. Pedrycz, W.: Fuzzy clustering with a knowledge-based guidance. Pattern Recogn. Lett. 25, 469–480 (2004)

    Article  Google Scholar 

  94. Wang, X., Wang, Y., Wang, L.: Improving fuzzy c-means clustering based on feature-weight learning. Pattern Recogn. Lett. 25, 1123–1132 (2004)

    Article  Google Scholar 

  95. Pianykh, O.S.: Analytically tractable case of fuzzy c-means clustering. Pattern Recogn. 39, 35–46 (2006)

    Article  MATH  Google Scholar 

  96. Park, D.-C.: Intuitive fuzzy C-means algorithm for MRI segmentation. In: 2010 International Conference on Information Science and Applications (ICISA), pp. 1–7. doi:10.1109/ICISA.2010.5480541

  97. Yang, M.S., Tsai, H.S.: A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction. Pattern Recogn. Lett. 29, 1713–1725 (2008)

    Article  Google Scholar 

  98. Kim, W.D., Lee, K.H., Lee, D.: A novel initialization scheme for the fuzzy c-means algorithm for color clustering. Pattern Recogn. Lett. 25, 227–237 (2004)

    Article  Google Scholar 

  99. ŁeRski, J.M., Owczarek, A.J.: A time-domain-constrained fuzzy clustering method and its application to signal analysis. Fuzzy Sets Syst. 155, 165–190 (2005)

    Article  Google Scholar 

  100. Ozer, M.: Fuzzy c-means clustering and Internet portals: a case study. Eur. J. Oper. Res. 164, 696–714 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  101. Inan, Z.H., Kuntalp, M.: A study on fuzzy C-means clustering-based systems in automatic spike detection. Comput. Biol. Med. 37, 1160–1166 (2007)

    Article  Google Scholar 

  102. Ceccarelli, M., Maratea, A.: Improving fuzzy clustering of biological data by metric learning with side information. Int. J. Approximate Reasoning 47, 45–57 (2008)

    Article  MATH  Google Scholar 

  103. Silva, S., Junior, M.D., Junior, V.L., Brennan, M.J.: Structural damage detection by fuzzy clustering. Mech. Syst. Signal Process. 22, 1636–1649 (2008)

    Article  Google Scholar 

  104. Chen, S.M., Chang, Y.C.: Multi-variable fuzzy forecasting based on fuzzy clustering and fuzzy rule interpolation techniques. Inf. Sci. 180, 4772–4783 (2010)

    Article  MathSciNet  Google Scholar 

  105. Iliadis, L.S., Vangeloudh, M., Spartalis, S.: An intelligent system employing an enhanced fuzzy c-means clustering model: application in the case of forest fires. Comput. Electron. Agric. 70, 276–284 (2010)

    Article  Google Scholar 

  106. Sudha, K.R., Raju, Y.B., Sekhar, A.C.: Fuzzy C-Means clustering for robust decentralized load frequency control of interconnected power system with generation rate constraint. Electr. Power Energy Syst. 37, 58–66 (2012)

    Article  Google Scholar 

  107. Yin, X.F., Khoo, L.P., Chong, Y.T.: A fuzzy c-means based hybrid evolutionary approach to the clustering of supply chain. Comput. Ind. Eng. 66, 768–780 (2013)

    Article  Google Scholar 

  108. Yan, Y., Chen, L., Tjhi, W.C.: Fuzzy semi-supervised co-clustering for text documents. Fuzzy Sets Syst. 215, 74–89 (2013)

    Article  MathSciNet  Google Scholar 

  109. Azara, A.T., El-Said, S.A., Hassaniend, A.E.: Fuzzy and hard clustering analysis for thyroid disease. Comput. Methods Programs Biomed. 11(1), 1–16 (2013)

    Article  Google Scholar 

  110. Liu, L.F., Sun, Z.D., Zhou, X.Y., Han, J.F., Jing, B.,Pan, Y.Y., Zhao, H.T., Neng, Y.: A new algorithm of modified fuzzy c means clustering (FCM) and the prediction of carbonate fluid. In: 76th EAGE Conference and Exhibition (2014). doi:10.3997/2214-4609.20140801

  111. Hathaway, R.J., Bezdek, J.C., Hu, Y.K.: Generalized fuzzy c-means clustering strategies using Lp norm distances. IEEE Trans. Fuzzy Syst. 8(5), 576–582

    Google Scholar 

  112. Wang, H.K., Hwang, J.C., Chang, P.L., Hsieh, F.H.: Function approximation using robust fuzzy-Grey CMAC method. Int. J. Model. Ident. Control 14(4), 227–234

    Google Scholar 

  113. Yang, M.S.: On asymptotic normality of a class of fuzzy c-means clustering procedures. Int. J. Gen. Syst. 22(4) (2007)

    Google Scholar 

  114. Yang, M.S., Yu, K.F.: On stochastic convergence theorems for the fuzzy c-means clustering procedure. Int. J. Gen. Syst. 16(4), 397–411 (2007)

    Article  Google Scholar 

  115. Kaushik, A., Soni, A.K., Soni, R.: Radial basis function network using intuitionist fuzzy C means for software cost estimation. Int. J. Comput. Appl. Technol. 47(1), 86–95 (2013)

    Google Scholar 

  116. Juang, C.F., Hsieh, C.D.: Fuzzy C-means based support vector machine for channel equalization. Int. J. Gen. Syst. 38(3) (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janmenjoy Nayak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Nayak, J., Naik, B., Behera, H.S. (2015). Fuzzy C-Means (FCM) Clustering Algorithm: A Decade Review from 2000 to 2014. In: Jain, L., Behera, H., Mandal, J., Mohapatra, D. (eds) Computational Intelligence in Data Mining - Volume 2. Smart Innovation, Systems and Technologies, vol 32. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2208-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2208-8_14

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2207-1

  • Online ISBN: 978-81-322-2208-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics