Abstract
In this paper, we present a new method based on empirical mode decomposition (EMD) for classification of seizure and seizure-free EEG signals. The EMD method decomposes the EEG signal into a set of narrow-band amplitude and frequency modulated (AM-FM) components known as intrinsic mode functions (IMFs). The method proposes the use of the area parameter and mean frequency estimation of IMFs in the classification of the seizure and seizure-free EEG signals. These parameters have been used as an input in least squares support vector machine (LS-SVM), which provides classification of seizure EEG signals from seizure-free EEG signals. The classification accuracy for classification of seizure and seizure-free EEG signals obtained by using proposed method is 98.33% for second IMF with radial basis function kernel of LS-SVM.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Iasemidis, L.D., Shiau, D.S., et al.: Adaptive epileptic seizure prediction system. IEEE Trans. Biomed. Eng. 50, 616–627 (2003)
Gotman, J.: Automatic detection of seizures and spikes. J. Clin. Neurophysiol. 16, 130–140 (1999)
Hese, P.V., Martens, J.P., Boon, P., Dedeurwaerdere, S., Lemahieu, I., Walle, R.V.: Detection of spike and wave discharges in the cortical EEG of genetic absence epilepsy rats from Strasbourg. Phys. Med. Biol. 48, 1685–1700 (2003)
Srinivasan, V., Eswaran, C., Sriraam, N.: Artificial neural network based epileptic detection using time-domain and frequency-domain features. J. Med. Syst. 29, 647–660 (2005)
Boashash, B., Mesbah, M., Colditz, P.: Time frequency detection of EEG abnormalities. In: Boashash, B. (ed.) Time-Frequency Signal Analysis and Processing: A Comprehensive Reference, ch. 15, article 15.5, pp. 663–670. Elsevier (2003)
Pachori, R.B., Sircar, P.: EEG signal analysis using FB expansion and second-order linear TVAR process. Signal Process 88, 415–420 (2008)
Adeli, H., Zhou, Z., Dadmehr, N.: Analysis of EEG records in an epileptic patient using wavelet transform. J. Neurosci. Methods 123, 69–87 (2003)
Khan, Y.U., Gotman, J.: Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clin. Neurophysiol. 114, 898–908 (2003)
Tzallas, A.T., Tsipouras, M.G., Fotisdis, D.I.: Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput. Intell. Neurosci., article ID 80510 (2007)
Güler, N.F., Übeyli, E.D., Güler, İ.: Recurrent neural networks employing Lyapunov exponents for EEG signal classification. Expert Syst. Appl. 29, 506–514 (2005)
Lehnertz, K., Elger, C.E.: Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss. Electroencephalogr. Clin. Neurophysiol. 95, 108–117 (1995)
Accardo, A., Affinito, M., Carrozzi, M., Bouquet, F.: Use of the fractal dimension for the analysis of electroencephalographic time series. Biol. Cybern. 77, 339–350 (1997)
Kannathal, N., Choob, M.L., et al.: Entropies for detection of epilepsy in EEG. Computer Methods Progr. Biomed. 80, 187–194 (2005)
Casdagli, M.C., Iasemidis, L.D., et al.: Non-linearity in invasive EEG recordings from patients with temporal lobe epilepsy. Electroencephalogr. Clin. Neurophysiol. 102, 98–105 (1997)
Song, Y., Lió, P.: A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine. J. Biomed. Sci. Eng. 3, 556–567 (2010)
Ghosh-Dastidar, S., Adeli, H., Dadmehr, N.: Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Trans. Biomed. Eng. 54, 1545–1551 (2007)
Ghosh-Dastidar, S., Adeli, H., Dadmehr, N.: Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Trans. Biomed. Eng. 55, 512–518 (2008)
Ocak, H.: Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst. Appl. 36, 2027–2036 (2009)
Guo, L., Rivero, D., Pazos, A.: Epileptic seizure detection using multiwavelet transform based approximation entropy and artificial neural networks. J. Neurosci. Methods 193, 156–163 (2010)
Pachori, R.B.: Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Res. Lett. Signal Process., article ID 293056 (2008)
Oweis, R.J., Abdulhey, E.W.: Seizure classification in EEG signals utilizing Hilbert-Huang transform. Biomed. Eng. Online 10, 38 (2011)
Pachori, R.B., Bajaj, V.: Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition, Computer Methods Progr. Biomed. (2011) (in press), doi:10.1016/j.cmpb.2011.03.009
Huang, N.E., et al.: The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lon. A 454, 903–995 (1998)
Andrzejak, R.G., Lehnertz, K., et al.: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity dependence on recording region and brain state. Phys. Rev. E. 64, article ID 061907 (2001)
Flandrin, P., Rilling, G., Goncalves, P.: Empirical mode decomposition as a filter bank. IEEE Signal Process. Lett. 11, 112–114 (2004)
Cohen, M.E., Hudson, D.L., Deedwania, P.: Applying continuous chaotic modeling to cardic signal analysis. IEEE Eng. Med. Biol. Mag. 15, 97–102 (1996)
Schroeder, J.: Signal processing via Fourier-Bessel series expansion. Digit. Signal Process. 3, 112–124 (1993)
Pachori, R.B., Hewson, D.: Assessment of effects of sensory perturbations using Fourier-Bessel expansion method for postual stability analysis. J. Intell. Syst. 20(2), 167–186 (2011)
Pachori, R.B., Sircar, P.: Analysis of multicomponent AM-FM signals using FB-DESA method. Digit. Signal Process. 20, 42–62 (2010)
Pachori, R.B., Sircar, P.: A new technique to reduce cross terms in Wigner distribution. Digit. Signal Process. 17, 466–474 (2007)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
Sukens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9, 293–300 (1999)
Khandoker, A.H., Lai, D.T.H., Begg, R.K., Palaniswami, M.: Wavelet-based feature extraction for support vector machines for screening balance impairments in the eldery. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 587–597 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer India Pvt. Ltd.
About this paper
Cite this paper
Bajaj, V., Pachori, R.B. (2012). EEG Signal Classification Using Empirical Mode Decomposition and Support Vector Machine. In: Deep, K., Nagar, A., Pant, M., Bansal, J. (eds) Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011) December 20-22, 2011. Advances in Intelligent and Soft Computing, vol 131. Springer, New Delhi. https://doi.org/10.1007/978-81-322-0491-6_57
Download citation
DOI: https://doi.org/10.1007/978-81-322-0491-6_57
Publisher Name: Springer, New Delhi
Print ISBN: 978-81-322-0490-9
Online ISBN: 978-81-322-0491-6
eBook Packages: EngineeringEngineering (R0)